scispace - formally typeset
Open AccessPosted Content

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

TLDR
A novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image and can be trained end-to-end in an unsupervised manner, which renders training on very large real world data feasible.
Abstract
In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.

read more

Citations
More filters
Proceedings Article

A morphable model for the synthesis of 3D faces

Matthew Turk
Proceedings ArticleDOI

RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild

TL;DR: A novel single-shot, multi-level face localisation method, named RetinaFace, which unifies face box prediction, 2D facial landmark localisation and 3D vertices regression under one common target: point regression on the image plane.
Proceedings ArticleDOI

Deepfake Video Detection Using Recurrent Neural Networks

TL;DR: A temporal-aware pipeline to automatically detect deepfake videos is proposed that uses a convolutional neural network to extract frame-level features and a recurrent neural network that learns to classify if a video has been subject to manipulation or not.
Proceedings ArticleDOI

Learning to Estimate 3D Human Pose and Shape from a Single Color Image

TL;DR: This work addresses the problem of estimating the full body 3D human pose and shape from a single color image and proposes an efficient and effective direct prediction method based on ConvNets, incorporating a parametric statistical body shape model (SMPL) within an end-to-end framework.
Proceedings ArticleDOI

Soft Rasterizer: A Differentiable Renderer for Image-Based 3D Reasoning

TL;DR: This work proposes a truly differentiable rendering framework that is able to directly render colorized mesh using differentiable functions and back-propagate efficient supervision signals to mesh vertices and their attributes from various forms of image representations, including silhouette, shading and color images.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Posted Content

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings Article

Spatial transformer networks

TL;DR: This work introduces a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network, and can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps.

Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments

TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Related Papers (5)