scispace - formally typeset
Journal ArticleDOI

Nanometre diameter fibres of polymer, produced by electrospinning

Darrell H. Reneker, +1 more
- 01 Sep 1996 - 
- Vol. 7, Iss: 3, pp 216-223
TLDR
More than 20 polymers, including polyethylene oxide, nylon, polyimide, DNA, polyaramid, and polyaniline, have been electrospun in this paper.
Abstract
Electrospinning uses electrical forces to produce polymer fibres with nanometre-scale diameters. Electrospinning occurs when the electrical forces at the surface of a polymer solution or melt overcome the surface tension and cause an electrically charged jet to be ejected. When the jet dries or solidifies, an electrically charged fibre remains. This charged fibre can be directed or accelerated by electrical forces and then collected in sheets or other useful geometrical forms. More than 20 polymers, including polyethylene oxide, nylon, polyimide, DNA, polyaramid, and polyaniline, have been electrospun in our laboratory. Most were spun from solution, although spinning from the melt in vacuum and air was also demonstrated. Electrospinning from polymer melts in a vacuum is advantageous because higher fields and higher temperatures can be used than in air.

read more

Citations
More filters
Journal ArticleDOI

A review on polymer nanofibers by electrospinning and their applications in nanocomposites

TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.
Journal ArticleDOI

Electrospinning: a fascinating fiber fabrication technique.

TL;DR: This review presents an overview of the electrospinning technique with its promising advantages and potential applications, and focuses on varied applications of electrospun fibers in different fields.
Journal ArticleDOI

Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers

TL;DR: Electrospinning is a highly versatile method to process solutions or melts, mainly of polymers, into continuous fibers with diameters ranging from a few micrometers to a few nanometers, applicable to virtually every soluble or fusible polymer.
Journal ArticleDOI

The effect of processing variables on the morphology of electrospun nanofibers and textiles

TL;DR: In this paper, the effects of two of the most important processing parameters, spinning voltage and solution concentration, on the morphology of the fibers formed were evaluated systematically, and it was found that spinning voltage is strongly correlated with the formation of bead defects in the fibers, and that current measurements may be used to signal the onset of the processing voltage at which the bead defect density increases substantially.
Journal ArticleDOI

Electrospun nanofibrous structure: A novel scaffold for tissue engineering

TL;DR: A novel poly(D,L-lactide-co-glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue-engineering applications, which acts to support and guide cell growth.
References
More filters
Journal ArticleDOI

Electrospinning process and applications of electrospun fibers

TL;DR: In this article, the authors describe the electrospinning process, the processing conditions, fiber morphology, and some possible uses of electrospun fibers, and describe the diameter of these fibers in the range of 0.05 to 5 microns.
Journal ArticleDOI

Disintegration of Water Drops in an Electric Field

TL;DR: In this article, it was shown that a conical interface between two fluids can exist in equilibrium in an electric field, but only when the cone has a semi-vertical angle 49.3$^\circ$.
Journal ArticleDOI

Unraveling Nanotubes: Field Emission from an Atomic Wire

TL;DR: Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching, in a process that resembles unraveling the sleeve of a sweater.
Journal ArticleDOI

XX. On the equilibrium of liquid conducting masses charged with electricity

TL;DR: In this article, the equilibrium of liquid conducting masses charged with electricity was studied and the authors proposed a method to solve the problem of finding the equilibrium point of a liquid conducting mass with respect to electricity.
Book

Nanosystems: Molecular Machinery, Manufacturing, and Computation

TL;DR: This book discusses molecular manufacturing systems, nanoscale Structural Components, and Nanomechanical Computational Systems, as well as some of the techniques used in macromolecular engineering and its applications.
Related Papers (5)