scispace - formally typeset
Open AccessProceedings Article

On the equivalence of a reduced-complexity recursive power normalization algorithm and the exponential window power estimation

Reads0
Chats0
TLDR
The equivalence of a recently proposed recursive power normalization algorithm and the traditional exponential window power estimation algorithm is established and the number of divisions from N to one for a TD-LMS adaptive filter with N coefficients is reduced.
Abstract
The transform-domain least-mean-square (TD-LMS) algorithm provides significantly faster convergence than the LMS algorithm for coloured input signals. However, a major disadvantage of the TD-LMS algorithm is the large computational complexity arising from the unitary transform and power normalization operations. In this paper we establish the equivalence of a recently proposed recursive power normalization algorithm and the traditional exponential window power estimation algorithm. The proposed algorithm is based on the matrix inversion lemma and is optimized for implementation on a digital signal processor (DSP). It reduces the number of divisions from N to one for a TD-LMS adaptive filter with N coefficients. This provides a significant reduction in computational complexity for DSP implementations. The equivalence of the reduced-complexity algorithm and the exponential window power estimation algorithm is demonstrated in simulation examples.

read more

References
More filters
Book

Adaptive Filter Theory

Simon Haykin
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Journal ArticleDOI

Frequency-domain and multirate adaptive filtering

TL;DR: An overview is presented of several frequency-domain adaptive filters that efficiently process discrete-time signals using block and multirate filtering techniques, including convergence properties and computational complexities of the adaptive algorithms and the effects of circular convolution and aliasing on the converged filter coefficients.
Journal ArticleDOI

Transform domain LMS algorithm

TL;DR: In this article, the concept of transform domain adaptive filtering is introduced and the relationship between several existing frequency-domain adaptive filtering algorithms is established, and applications of the discrete Fourier transform (DFT) and the discrete cosine transform (DCT) domain adaptive filter algorithms in the areas of speech processing and adaptive line enhancers are discussed.
Journal ArticleDOI

Adaptive filtering algorithms with selective partial updates

TL;DR: A selective-partial-update normalized least-mean-square (NLMS) algorithm is developed, and its stability is analyzed using the traditional independence assumptions and error-energy bounds, and the new algorithms appear to have good convergence performance.
Related Papers (5)