scispace - formally typeset
Proceedings ArticleDOI

Opto-electronic control of terahertz metamaterials

Reads0
Chats0
TLDR
In this article, the authors demonstrate external control of metamaterials operating at terahertz frequencies through photodoping of semiconducting substrates, used to support metamatter arrays, and show ultrafast switching times.
Abstract
We demonstrate external control of metamaterials operating at terahertz frequencies. Through photodoping of semiconducting substrates, used to support metamaterial arrays, we show ultrafast switching times. New metamaterial "grids" are presented, which may be formed by the union of electric metamaterials arrays. Metamaterial grids are then utilized to form a Schottky contact are used to demonstrate voltage switching of the metamaterials resonance. Both devices presented may be utilized to form novel devices at terahertz frequencies and also scaled to other energy regimes of interest.© (2007) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

read more

References
More filters
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Experimental Verification of a Negative Index of Refraction

TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Journal ArticleDOI

Magnetism from conductors and enhanced nonlinear phenomena

TL;DR: In this paper, it was shown that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu/sub eff/, which can be tuned to values not accessible in naturally occurring materials.
Journal ArticleDOI

Composite Medium with Simultaneously Negative Permeability and Permittivity

TL;DR: A composite medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous wires, that exhibits a frequency region in the microwave regime with simultaneously negative values of effective permeability and permittivity varepsilon(eff)(omega).
Journal ArticleDOI

Controlling Electromagnetic Fields

TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Related Papers (5)