scispace - formally typeset
Open AccessJournal ArticleDOI

Patterns and collective behavior in granular media: Theoretical concepts

Reads0
Chats0
TLDR
In this paper, the authors survey a number of situations in which nontrivial patterns emerge in granular systems, elucidates important distinctions between these phenomena and similar ones occurring in continuum fluids, and describes general principles and models of pattern formation in complex systems that have been successfully applied to granular system.
Abstract
Granular materials are ubiquitous in our daily lives. While they have been the subject of intensive engineering research for centuries, in the last two decades granular matter has attracted significant attention from physicists. Yet despite major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradictory concepts and approaches. Various theoretical models have emerged for describing the onset of collective behavior and pattern formation in granular matter. This review surveys a number of situations in which nontrivial patterns emerge in granular systems, elucidates important distinctions between these phenomena and similar ones occurring in continuum fluids, and describes general principles and models of pattern formation in complex systems that have been successfully applied to granular systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Collective Motion

TL;DR: In this paper, the basic laws describing the essential aspects of collective motion are reviewed and a discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, are provided.
Journal ArticleDOI

The Mechanics and Statistics of Active Matter

TL;DR: In this paper, a unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs, including all living organisms and their motile constituents such as molecular motors.
Journal ArticleDOI

Active Brownian Particles. From Individual to Collective Stochastic Dynamics

TL;DR: In this paper, the authors focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics.
Journal ArticleDOI

Flows of Dense Granular Media

TL;DR: In this article, the existence of a dense flow regime characterized by enduring contacts is discussed, and results from experiments and simulations in different configurations support a description in terms of a frictional visco-plastic constitutive law.
Journal ArticleDOI

Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering

TL;DR: Direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface are reported, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces.
References
More filters
Journal Article

Discrete numerical model for granular assemblies.

Peter Cundall, +1 more
- 01 Jan 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
Journal ArticleDOI

A discrete numerical model for granular assemblies

Peter Cundall, +1 more
- 01 Mar 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
Journal ArticleDOI

The kinetics of precipitation from supersaturated solid solutions

TL;DR: In this paper, an analysis is made of the process whereby diffusion effects can cause the precipitation of grains of a second phase in a supersaturated solid solution, and the kinetics of this type of grain growth are examined in detail.
Journal ArticleDOI

Self-organized criticality: An explanation of the 1/ f noise

TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.