scispace - formally typeset
Open AccessPosted Content

Peephole: Predicting Network Performance Before Training.

TLDR
A unified way to encode individual layers into vectors and bring them together to form an integrated description via LSTM, taking advantage of the recurrent network's strong expressive power, can reliably predict the performances of various network architectures.
Abstract
The quest for performant networks has been a significant force that drives the advancements of deep learning in recent years. While rewarding, improving network design has never been an easy journey. The large design space combined with the tremendous cost required for network training poses a major obstacle to this endeavor. In this work, we propose a new approach to this problem, namely, predicting the performance of a network before training, based on its architecture. Specifically, we develop a unified way to encode individual layers into vectors and bring them together to form an integrated description via LSTM. Taking advantage of the recurrent network's strong expressive power, this method can reliably predict the performances of various network architectures. Our empirical studies showed that it not only achieved accurate predictions but also produced consistent rankings across datasets -- a key desideratum in performance prediction.

read more

Citations
More filters
Journal ArticleDOI

AutoML: A survey of the state-of-the-art

TL;DR: A comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML methods according to the pipeline, covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS).
Posted Content

Efficient Neural Architecture Search via Parameter Sharing

TL;DR: Efficient Neural Architecture Search is a fast and inexpensive approach for automatic model design that establishes a new state-of-the-art among all methods without post-training processing and delivers strong empirical performances using much fewer GPU-hours.
Proceedings Article

Neural Architecture Optimization

TL;DR: Neural architecture optimization (NAO) as discussed by the authors is a method for automatic neural architecture design based on continuous optimization, where an encoder embeds/maps neural network architectures into a continuous space and a decoder maps a continuous representation of a network back to its architecture.
Posted Content

Taking Human out of Learning Applications: A Survey on Automated Machine Learning

TL;DR: An up to date survey on AutoML and proposes a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods.
Posted Content

SNAS: Stochastic Neural Architecture Search

TL;DR: It is proved that this search gradient optimizes the same objective as reinforcement-learning-based NAS, but assigns credits to structural decisions more efficiently, and is further augmented with locally decomposable reward to enforce a resource-efficient constraint.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.