scispace - formally typeset
Journal ArticleDOI

Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles

Reads0
Chats0
TLDR
In this article, the electromagnetic interaction between Au nanoparticles positioned atop a Si pn junction photodiode and incident electromagnetic plane waves has been performed as a function of wavelength, leading to increased electromagnetic field amplitude within the semiconductor and consequently increased photocurrent response, over a broad range of wavelengths extending upward from the nanoparticle surface plasmon polariton resonance wavelength.
Abstract
Experimental characterization and finite-element numerical simulations of the electromagnetic interaction between Au nanoparticles positioned atop a Si pn junction photodiode and incident electromagnetic plane waves have been performed as a function of wavelength. The presence of the Au nanoparticles is found to lead to increased electromagnetic field amplitude within the semiconductor, and consequently increased photocurrent response, over a broad range of wavelengths extending upward from the nanoparticle surface plasmon polariton resonance wavelength. At shorter wavelengths, a reduction in electromagnetic field amplitude and a corresponding decrease in photocurrent response in the semiconductor are observed. Numerical simulations reveal that these different behaviors are a consequence of a shift in the phase of the nanoparticle polarizability near the surface plasmon polariton wavelength, leading to interference effects within the semiconductor that vary strongly with wavelength. These observations hav...

read more

Citations
More filters
Journal ArticleDOI

Plasmonics for improved photovoltaic devices

TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Journal ArticleDOI

Plasmonic solar cells

TL;DR: The scattering from metal nanoparticles near their localized plasmon resonance is a promising way of increasing the light absorption in thin-film solar cells and experimental and theoretical progress is reviewed.
Journal ArticleDOI

Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters.

TL;DR: Plasmonic resonances in nanoantennas overcome constraints on the resolution to which an object can be imaged, as well as the size of the transverse cross section of efficient guiding structures to the wavelength dimension, allowing unprecedented control of light-matter interactions within subwavelength volumes.
Journal ArticleDOI

Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements

TL;DR: In this article, the authors used a two-dimensional, periodic array of Ag strips on a silica-coated Si film supported by a silicon substrate to achieve a 43% enhancement in the short circuit current as compared to a cell without metallic structures.
Journal ArticleDOI

Tunable light trapping for solar cells using localized surface plasmons

TL;DR: In this article, a simple and effective method of enhancing light trapping in solar cells with thin absorber layers by tuning localized surface plasmons in arrays of Ag nanoparticles is presented.
References
More filters
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Book

Absorption and Scattering of Light by Small Particles

TL;DR: In this paper, a Potpourri of Particles is used to describe surface modes in small Particles and the Angular Dependence of Scattering is shown to be a function of the size of the particles.
Proceedings Article

Physics of semiconductor devices

S. M. Sze
Journal ArticleDOI

The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment

TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Journal ArticleDOI

Extraordinary optical transmission through sub-wavelength hole arrays

TL;DR: In this article, the optical properties of submicrometre cylindrical cavities in metallic films were explored and it was shown that arrays of such holes display highly unusual zero-order transmission spectra at wavelengths larger than the array period, beyond which no diffraction occurs.
Related Papers (5)