scispace - formally typeset
Open AccessJournal ArticleDOI

Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems

Reads0
Chats0
TLDR
The proposed deep learning-based approach to handle wireless OFDM channels in an end-to-end manner is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise exists.
Abstract
This letter presents our initial results in deep learning for channel estimation and signal detection in orthogonal frequency-division multiplexing (OFDM) systems. In this letter, we exploit deep learning to handle wireless OFDM channels in an end-to-end manner. Different from existing OFDM receivers that first estimate channel state information (CSI) explicitly and then detect/recover the transmitted symbols using the estimated CSI, the proposed deep learning-based approach estimates CSI implicitly and recovers the transmitted symbols directly. To address channel distortion, a deep learning model is first trained offline using the data generated from simulation based on channel statistics and then used for recovering the online transmitted data directly. From our simulation results, the deep learning based approach can address channel distortion and detect the transmitted symbols with performance comparable to the minimum mean-square error estimator. Furthermore, the deep learning-based approach is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise exists. In summary, deep learning is a promising tool for channel estimation and signal detection in wireless communications with complicated channel distortion and interference.

read more

Citations
More filters
Journal ArticleDOI

Machine Learning for MU-MIMO Receive Processing in OFDM Systems

TL;DR: In this paper, a machine learning-enhanced multiuser multiple-input multiple-output (MU-MIMO) receiver is proposed, which builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
Journal ArticleDOI

Mixed-Timescale Deep-Unfolding for Joint Channel Estimation and Hybrid Beamforming

TL;DR: An end-to-end deep-unfolding neural network (NN) joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the system sum rate in time-division duplex (TDD) massive MIMO systems and can significantly outperform conventional algorithms with reduced computational complexity and signaling overhead.
Posted Content

Intelligent Radio Signal Processing: A Survey

TL;DR: In this paper, the authors present a survey of the state-of-the-art in intelligent radio signal processing for the wireless physical layer, including modulation classification, signal detection, beamforming, and channel estimation.
Posted Content

Blind Channel Estimation for Massive MIMO: A Deep Learning Assisted Approach

TL;DR: It is proved that by exploiting the asymptotic orthogonality of the massive MIMO channels, the channel distortion can be averaged out without the prior knowledge of channel impulse responses, and after some mathematical manipulation, different users’ transmitted data symbols can be extracted.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Journal ArticleDOI

Effects of clipping and filtering on the performance of OFDM

TL;DR: This work investigates, through extensive computer simulations, the effects of clipping and filtering on the performance of OFDM, including the power spectral density, the crest factor, and the bit-error rate.
Book ChapterDOI

WINNER II Channel Models

TL;DR: In this article, the authors present an introduction to channel models and channel models, and a discussion of channel model usage and models and models' models' parameters. But this chapter contains sections titled: Introduction Modelling Considerations Channel Modelling Approach Channel Models and Parameters Channel Model Usage Conclusion
Related Papers (5)