scispace - formally typeset
Open AccessJournal Article

Random search for hyper-parameter optimization

James Bergstra, +1 more
- 01 Mar 2012 - 
- Vol. 13, Iss: 1, pp 281-305
TLDR
This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid, and shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper- parameter optimization algorithms.
Abstract
Grid search and manual search are the most widely used strategies for hyper-parameter optimization. This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a comparison with a large previous study that used grid search and manual search to configure neural networks and deep belief networks. Compared with neural networks configured by a pure grid search, we find that random search over the same domain is able to find models that are as good or better within a small fraction of the computation time. Granting random search the same computational budget, random search finds better models by effectively searching a larger, less promising configuration space. Compared with deep belief networks configured by a thoughtful combination of manual search and grid search, purely random search over the same 32-dimensional configuration space found statistically equal performance on four of seven data sets, and superior performance on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation set performance reveals that for most data sets only a few of the hyper-parameters really matter, but that different hyper-parameters are important on different data sets. This phenomenon makes grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some light on why recent "High Throughput" methods achieve surprising success--they appear to search through a large number of hyper-parameters because most hyper-parameters do not matter much. We anticipate that growing interest in large hierarchical models will place an increasing burden on techniques for hyper-parameter optimization; this work shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper-parameter optimization algorithms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Squeeze-and-Excitation Networks

TL;DR: This work proposes a novel architectural unit, which is term the "Squeeze-and-Excitation" (SE) block, that adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels and finds that SE blocks produce significant performance improvements for existing state-of-the-art deep architectures at minimal additional computational cost.
Journal ArticleDOI

Representation Learning: A Review and New Perspectives

TL;DR: Recent work in the area of unsupervised feature learning and deep learning is reviewed, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks.
Posted Content

Empirical evaluation of gated recurrent neural networks on sequence modeling

TL;DR: These advanced recurrent units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU), are found to be comparable to LSTM.
Proceedings ArticleDOI

MobileNetV2: Inverted Residuals and Linear Bottlenecks

TL;DR: MobileNetV2 as mentioned in this paper is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers and intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity.
Posted Content

MobileNetV2: Inverted Residuals and Linear Bottlenecks

TL;DR: A new mobile architecture, MobileNetV2, is described that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes and allows decoupling of the input/output domains from the expressiveness of the transformation.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Journal ArticleDOI

A simplex method for function minimization

TL;DR: A method is described for the minimization of a function of n variables, which depends on the comparison of function values at the (n 41) vertices of a general simplex, followed by the replacement of the vertex with the highest value by another point.
Book

Neural networks for pattern recognition

TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Related Papers (5)
Trending Questions (2)
What are grid search and randomized?

Grid search and random search are hyper-parameter optimization strategies. Grid search involves systematically testing combinations of hyper-parameter values, while random search involves randomly selecting hyper-parameter values for testing.

How does random search compare to other search algorithms?

Random search is shown to be more efficient for hyper-parameter optimization compared to grid search and manual search in terms of finding better models within a smaller computation time.