scispace - formally typeset
Open AccessJournal ArticleDOI

Relationship Discovery and Hierarchical Embedding for Web Service Quality Prediction

Reads0
Chats0
TLDR
This work proposes a novel relationship discovery and hierarchical embedding method based on GCNs (named as RDHE), which designs a dual mechanism to represent services and users, respectively, and designs a new community discovery method and a fast similarity calculation process, which can fully mine and utilize the relationships in the graph.
Abstract
Web Services Quality Prediction has become a popular research theme in Cloud Computing and the Internet of Things. Graph Convolutional Network (GCN)-based methods are more efficient by aggregating feature information from the local graph neighborhood. Despite the fact that these prior works have demonstrated better prediction performance, they are still challenged as follows: (1) first, the user-service bipartite graph is essentially a heterogeneous graph that contains four kinds of relationships. Previous GCN-based models have only focused on using some of these relationships. Therefore, how to fully mine and use the above relationships is critical to improving the prediction accuracy. (2) After the embedding is obtained from the GCNs, the commonly used similarity calculation methods for downstream prediction need to traverse the data one by one, which is time-consuming. To address these challenges, this work proposes a novel relationship discovery and hierarchical embedding method based on GCNs (named as RDHE), which designs a dual mechanism to represent services and users, respectively, designs a new community discovery method and a fast similarity calculation process, which can fully mine and utilize the relationships in the graph. The results of the experiment on the real data set show that this method greatly improved the accuracy of the web service quality prediction.

read more

Content maybe subject to copyright    Report

References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

Latent dirichlet allocation

TL;DR: This work proposes a generative model for text and other collections of discrete data that generalizes or improves on several previous models including naive Bayes/unigram, mixture of unigrams, and Hofmann's aspect model.
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Proceedings ArticleDOI

DeepWalk: online learning of social representations

TL;DR: DeepWalk as mentioned in this paper uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences, which encode social relations in a continuous vector space, which is easily exploited by statistical models.
Related Papers (5)