scispace - formally typeset
Open AccessJournal ArticleDOI

Robust Adaptive Beamforming Based on Low-Rank and Cross-Correlation Techniques

Hang Ruan, +1 more
- 01 Aug 2016 - 
- Vol. 64, Iss: 15, pp 3919-3932
TLDR
This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming algorithms based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method.
Abstract
This paper presents cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. First, we construct a general linear equation considered in large dimensions whose solution yields the steering vector mismatch. Then, we employ the idea of the full orthogonalization method (FOM), an orthogonal Krylov subspace based method, to iteratively estimate the steering vector mismatch in a reduced-dimensional subspace, resulting in the proposed orthogonal Krylov subspace projection mismatch estimation (OKSPME) method. We also devise adaptive algorithms based on stochastic gradient (SG) and conjugate gradient (CG) techniques to update the beamforming weights with low complexity and avoid any costly matrix inversion. The main advantages of the proposed low-rank and mismatch estimation techniques are their cost-effectiveness when dealing with high-dimension subspaces or large sensor arrays. Simulations results show excellent performance in terms of the output signal-to-interference-plus-noise ratio (SINR) of the beamformer among all the compared RAB methods.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Robust Adaptive Beamforming Based on Conjugate Gradient Algorithms

TL;DR: This paper derives a diagonal loading CGLS algorithm (CG applied to normal equations) and proposes a simple method to choose the loading level based on a coarse estimation of the desired signal power, which can effectively reduce the signal self-cancellation at high signal-to-noise ratio.
Journal ArticleDOI

Robust Adaptive Beamforming via Simplified Interference Power Estimation

TL;DR: Simulation results demonstrate that the overestimation of interference powers hardly degrades the performance of adaptive beamforming, and the proposed algorithm achieves nearly optimal performance across a wide range of signal-to-noise ratios.
Journal ArticleDOI

New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation

TL;DR: In this paper, the robust adaptive beamforming design problem based on estimation of the signal-of-interest (SOI) steering vector is considered, and a beamformer output power maximization problem is formulated and solved subject to a double-sided norm perturbation constraint, a similarity constraint, and an inhomogeneous constraint that guarantees that the direction of arrival (DOA) of the SOI is away from the DOA region of all linear combinations of the interference steering vectors.
Journal ArticleDOI

Maximum Entropy-Based Interference-Plus-Noise Covariance Matrix Reconstruction for Robust Adaptive Beamforming

TL;DR: A new low-complexity RAB approach based on interference-plus-noise covariance matrix (IPNC) reconstruction and steering vector (SV) estimation is proposed, which can provide superior performance to several previously proposed beamformers.
Journal ArticleDOI

Distributed Robust Beamforming Based on Low-Rank and Cross-Correlation Techniques: Design and Analysis

TL;DR: The proposed RDB approach mitigates the effects of channel errors in wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output and low-rank techniques.
References
More filters
Journal ArticleDOI

Low-Complexity Set-Membership Channel Estimation for Cooperative Wireless Sensor Networks

TL;DR: This paper presents and incorporates an error bound function into the two channel estimation methods, which can automatically adjust the error bound with the update of the channel estimates, and shows good performance of the proposed algorithms in terms of convergence speed, steady-state mean square error, and bit error rate.
Journal ArticleDOI

Blind adaptive MIMO receivers for space-time block-coded DS-CDMA systems in multipath channels using the constant modulus criterion

TL;DR: In this paper, the authors proposed a blind adaptive multi-input multi-output (MIMO) linear receivers for DS-CDMA systems using multiple transmit antennas and space-time block codes (STBC) in multipath channels.
Journal ArticleDOI

Code-constrained blind detection of CDMA signals in multipath channels

TL;DR: A constant-modulus-algorithm-based multiuser detection scheme is proposed for a communication system under multipath propagation that integrates multiple constraints into the optimization criterion to mitigate channel distortion andMultiuser interference.
Journal ArticleDOI

Adaptive Widely Linear Reduced-Rank Beamforming Based on Joint Iterative Optimization

TL;DR: It is shown that the improved adaptive scheme achieves the best convergence performance among all the considered methods with a low computational complexity.
Journal ArticleDOI

Switched Interleaving Techniques with Limited Feedback for Interference Mitigation in DS-CDMA Systems

TL;DR: Simulation results show that the proposed algorithm achieves significantly better performance than the conventional DS-CDMA (C- CDMA) systems and the existing chip-interleaving, linear precoding and adaptive spreading techniques.
Related Papers (5)