scispace - formally typeset
Journal ArticleDOI

Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory

G. K. Batchelor
- 01 Jun 1982 - 
- Vol. 119, Iss: -1, pp 379-408
Reads0
Chats0
TLDR
In this paper, Batchelor et al. derived formulae for the mean velocity of the particles of each species correct to order ϕ, that is, with allowance for the effect of pair interactions.
Abstract
Small rigid spherical partials are settling under gravity through Newtonian fluid, and the volume fraction of the particles (ϕ) is small although sufficiently large for the effects of interactions between pairs of particles to be significant. Two neighbouring particles interact both hydrodynamically (with low-Reynolds-number flow about each particle) and through the exertion of a mutual force of molecular or electrical origin which is mainly repulsive; and they also diffuse relatively to each other by Brownian motion. The dispersion contains several species of particle which differ in radius and density.The purpose of the paper is to derive formulae for the mean velocity of the particles of each species correct to order ϕ, that is, with allowance for the effect of pair interactions. The method devised for the calculation of the mean velocity in a monodisperse system (Batchelor 1972) is first generalized to give the mean additional velocity of a particle of species i due to the presence of a particle of species j in terms of the pair mobility functions and the probability distribution pii(r) for the relative position of an i and a j particle. The second step is to determine pij(r) from a differential equation of Fokker-Planck type representing the effects of relative motion of the two particles due to gravity, the interparticle force, and Brownian diffusion. The solution of this equation is investigated for a range of special conditions, including large values of the Peclet number (negligible effect of Brownian motion); small values of the Ptclet number; and extreme values of the ratio of the radii of the two spheres. There are found to be three different limits for pij(r) corresponding to different ways of approaching the state of equal sphere radii, equal sphere densities, and zero Brownian relative diffusivity.Consideration of the effect of relative diffusion on the pair-distribution function shows the existence of an effective interactive force between the two particles and consequently a contribution to the mean velocity of the particles of each species. The direct contributions to the mean velocity of particles of one species due to Brownian diffusion and to the interparticle force are non-zero whenever the pair-distribution function is non-isotropic, that is, at all except large values of the Peclet number.The forms taken by the expression for the mean velocity of the particles of one species in the various cases listed above are examined. Numerical values will be presented in Part 2.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Magnetophoretic trajectory tracking magnetometry: a new technique for assessing magnetic properties of submagnetic microparticles and cells.

TL;DR: A new approach for assessing magnetic properties of submagnetic microparticles and cells, magnetophoretic trajectory tracking magnetometry (MTTM), that employs recording of long 2D trajectories of particle motion in a slot fluid channel caused by the action of crossed gravitational and magnetic forces is developed.
Dissertation

Dispersions of core-shell magnetic nanoparticles : magnetic properties and thermodiffusion

TL;DR: In this article, a core-shell NPs are synthesized with a core of Mn-ferrite, Coferrite and mixed Zn-Mn ferrites, coated with a maghemite shell.
Journal ArticleDOI

How Peclet number affects microstructure and transient cluster aggregation in sedimenting colloidal suspensions

TL;DR: In this article, the average sedimentation velocity changes from a non-monotonic dependence on packing fraction at low Pe numbers, to a monotonic decrease with higher Pe numbers.
Journal ArticleDOI

Methods for the calculation of the self‐diffusion coefficient of interacting Brownian particles

TL;DR: In this article, Batchelor's method of calculating the first-order concentration dependence of the self-diffusion coefficient of spherical Brownian particles is compared with our method devised previously, which is based on the solution of the two-particle Smoluchowski equation as applied to a stationary state.
Journal ArticleDOI

A device for reducing the siltation of the front chamber of the pumping station in irrigation systems

TL;DR: In this article, the authors presented a method of calculating the pipeline system of a new device designed to significantly reduce the siltation of the front chamber of irrigation pumping stations by artificially creating turbulence in the water flow in the bottom layer of the structure.
References
More filters
Journal ArticleDOI

The effect of Brownian motion on the bulk stress in a suspension of spherical particles

TL;DR: In this article, the effect of Brownian motion on the probability density of the separation vector of rigid spherical particles in a dilute suspension is investigated and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles.
Journal ArticleDOI

Sedimentation in a dilute dispersion of spheres

TL;DR: In this article, the authors considered a large number of identical small rigid spheres with random positions which are falling through Newtonian fluid under gravity and determined the mean value of the velocity of a sphere (U).
Journal ArticleDOI

The determination of the bulk stress in a suspension of spherical particles to order c 2

TL;DR: In this article, an exact formula for the term of order c2 in the expression for the bulk stress in a suspension of force-free spherical particles in Newtonian ambient fluid, where c is the volume fraction of the spheres and c [Lt ] 1.8.
Journal ArticleDOI

Brownian diffusion of particles with hydrodynamic interaction

TL;DR: In this paper, it is shown that the particle flux in probability space due to Brownian motion is the same as that which would be produced by the application of a certain "thermodynamic" force to each particle.
Journal ArticleDOI

Diffusion in a dilute polydisperse system of interacting spheres

TL;DR: In this article, Batchelor et al. gave a linear combination of the second virial coefficient for the osmotic pressure of the dispersion (measuring the effective force acting on particles when there is a unit concentration gradient) and analogous virial coefficients for the bulk mobility of the particles.