scispace - formally typeset
Open AccessProceedings Article

Self-adaptive hierarchical sentence model

Reads0
Chats0
TLDR
This paper proposed a self-adaptive hierarchical sentence model (AdaSent), which forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments.
Abstract
The ability to accurately model a sentence at varying stages (e.g., word-phrase-sentence) plays a central role in natural language processing. As an effort towards this goal we propose a self-adaptive hierarchical sentence model (AdaSent). AdaSent effectively forms a hierarchy of representations from words to phrases and then to sentences through recursive gated local composition of adjacent segments. We design a competitive mechanism (through gating networks) to allow the representations of the same sentence to be engaged in a particular learning task (e.g., classification), therefore effectively mitigating the gradient vanishing problem persistent in other recursive models. Both qualitative and quantitative analysis shows that AdaSent can automatically form and select the representations suitable for the task at hand during training, yielding superior classification performance over competitor models on 5 benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Representation Learning with Contrastive Predictive Coding

TL;DR: This work proposes a universal unsupervised learning approach to extract useful representations from high-dimensional data, which it calls Contrastive Predictive Coding, and demonstrates that the approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
Proceedings Article

Skip-thought vectors

TL;DR: This article used the continuity of text from books to train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage, which can produce highly generic sentence representations that are robust and perform well in practice.
Proceedings ArticleDOI

Generating Sentences from a Continuous Space

TL;DR: This work introduces and study an RNN-based variational autoencoder generative model that incorporates distributed latent representations of entire sentences that allows it to explicitly model holistic properties of sentences such as style, topic, and high-level syntactic features.
Proceedings ArticleDOI

Supervised learning of universal sentence representations from natural language inference data

TL;DR: This article showed how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks.
Proceedings ArticleDOI

Document Modeling with Gated Recurrent Neural Network for Sentiment Classification

TL;DR: A neural network model is introduced to learn vector-based document representation in a unified, bottom-up fashion and dramatically outperforms standard recurrent neural network in document modeling for sentiment classification.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Distributed Representations of Words and Phrases and their Compositionality

TL;DR: This paper presents a simple method for finding phrases in text, and shows that learning good vector representations for millions of phrases is possible and describes a simple alternative to the hierarchical softmax called negative sampling.
Proceedings Article

Neural Machine Translation by Jointly Learning to Align and Translate

TL;DR: It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Posted Content

Neural Machine Translation by Jointly Learning to Align and Translate

TL;DR: In this paper, the authors propose to use a soft-searching model to find the parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.