scispace - formally typeset
Journal ArticleDOI

Shape control of platinum and palladium nanoparticles for catalysis

TLDR
This minireview surveys the different approaches in solution-phase synthesis that have been successfully adopted for achieving shaped platinum and palladium nanoparticles that are enclosed with specific crystallographic facets.
Abstract
Platinum and palladium are important catalysts for a wide variety of industrial processes. With the increasing demands of these materials, the development of high-performance catalysts is an important area of research, and as a result, shape control synthesis has become one of the leading research focuses. This minireview surveys the different approaches in solution-phase synthesis that have been successfully adopted for achieving shaped platinum and palladium nanoparticles that are enclosed with specific crystallographic facets. In addition, catalytic studies of the shaped nanoparticles are highlighted, in which promising results have been reported in terms of enhanced activity and selectivity. The future outlook discusses the aspects in synthesis and catalysis to be considered for the development of highly efficient and effective catalysts.

read more

Citations
More filters
Journal ArticleDOI

Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology.

TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Journal Article

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

TL;DR: In this article, the authors used in situ transmission electron microscopy to show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles.
Journal ArticleDOI

Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts

TL;DR: The use of plant biomass or extracts for the biosynthesis of novel metal nanoparticles (silver, gold, platinum, and palladium) would be more significant if the nanoparticles are synthesized extracellularly and in a controlled manner according to their dispersity of shape and size as discussed by the authors.
Journal ArticleDOI

Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis

TL;DR: In this article, a colloidal synthetic approach is used to control the size and shape of nanoparticles, which enables it to be studied as a model heterogeneous catalyst. But, the size of metal particles can be controlled to cluster regimes by using dendrimers.
References
More filters
Journal ArticleDOI

Chemistry and properties of nanocrystals of different shapes.

TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Journal ArticleDOI

Colloidal nanocrystal synthesis and the organic–inorganic interface

TL;DR: Colloidal nanocrystals are solution-grown, nanometre-sized, inorganic particles that are stabilized by a layer of surfactants attached to their surface, which makes these structures attractive and promising building blocks for advanced materials and devices.
Journal ArticleDOI

Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity

TL;DR: Platinum NCs of unusual tetrahexahedral (THH) shape were prepared at high yield by an electrochemical treatment of Pt nanospheres supported on glassy carbon by a square-wave potential to exhibit much enhanced catalytic activity for equivalent Pt surface areas for electro-oxidation of small organic fuels such as formic acid and ethanol.
Journal ArticleDOI

Recent advances in the liquid-phase syntheses of inorganic nanoparticles.

TL;DR: The development of novel materials is a fundamental focal point of chemical research; and this interest is mandated by advancements in all areas of industry and technology.

Colloidal nanocrystal synthesis and the organic-inorganic interface - eScholarship

TL;DR: In this article, the authors review what is known about nanocrystal growth and outline strategies for controlling it, and present a review of the current state-of-the-art in this area.
Related Papers (5)