scispace - formally typeset
Journal ArticleDOI

Single lamellar mechanics of the human lumbar anulus fibrosus

TLDR
The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles.
Abstract
The mechanical behavior of the entire anulus fibrosus is determined essentially by the tensile properties of its lamellae, their fiber orientations, and the regional variation of these quantities. Corresponding data are rare in the literature. The paper deals with an in vitro study of single lamellar anulus lamellae and aims to determine (i) their tensile response and regional variation, and (ii) the orientation of lamellar collagen fibers and their regional variation. Fresh human body-disc-body units (L1–L2, n=11) from cadavers were cut midsagittally producing two hemidisc units. One hemidisc was used for the preparation of single lamellar anulus specimens for tensile testing, while the other one was used for the investigation of the lamellar fiber orientation. Single lamellar anulus specimens with adjacent bone fragments were isolated from four anatomical regions: superficial and deep lamellae (3.9±0.21 mm, mean ± SD, apart from the outer boundary surface of the anulus fibrosus) at ventro-lateral and dorsal positions. The specimens underwent cyclic uniaxial tensile tests at three different strain rates in 0.15 mol/l NaCl solution at 37°C, whereby the lamellar fiber direction was aligned with the load axis. For the characterization of the tensile behavior three moduli were calculated: Elow (0–0.1 MPa), Emedium (0.1–0.5 MPa) and Ehigh (0.5–1 MPa). Additionally, specimens were tested with the load axis transverse to the fiber direction. From the second hemidisc fiber angles with respect to the horizontal plane were determined photogrammetrically from images taken at six circumferential positions from ventral to dorsal and at three depth levels. Tensile moduli along the fiber direction were in the range of 28–78 MPa (regional mean values). Superficial lamellae have larger Emedium (p=0.017) and Ehigh (p=0.012) than internal lamellae, and the mean value of superficial lamellae is about three times higher than that of deep lamellae. Tensile moduli of ventro-lateral lamellae do not differ significantly from the tensile moduli of dorsal lamellae, and Elow is generally indifferent with respect to the anatomical region. Tensile moduli transverse to the fiber direction were about two orders of magnitude smaller (0.22±0.2 MPa, mean ± SD, n=5). Tensile properties are not correlated significantly with donor age. Only small viscoelastic effects were observed. The regional variation of lamellar fiber angle ϕ is described appropriately by a regression line |ϕ|=23.2+0.130×α (r2=0.55, p<0.001), where α is the polar angle associated with the circumferential position. The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles. These features must be considered for appropriate physical and numerical modeling of the anulus fibrosus.

read more

Citations
More filters
Journal ArticleDOI

Efficient probabilistic finite element analysis of a lumbar motion segment

TL;DR: Improvements in efficiency and maintained accuracy enable intersubject variability to be considered in a variety of biomechanical evaluations, including design-phase screening of orthopedic implants.
Journal ArticleDOI

Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL:PLLA Angle-Ply Nanofiber Sheets

TL;DR: This is the first study focused on applying CSRS technology for the fabrication of a more clinically-relevant, 3D tissue engineered scaffold for AF tissue regeneration and which overcomes this translational limitation.

How to incorporate collagen fiber orientations in an arterial bifurcation

TL;DR: A new methodology is proposed to incorporate fiber orientation in complex geometries and applied to a model of the carotid artery, it is demonstrated that incorporation of fibers indeed influence the distribution of the stresses in the bifurcation.
Journal ArticleDOI

Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks.

TL;DR: In this article, the authors developed a nonhomogenous micromechanical model as well as two coarser homogenous hyperelastic and microplane models of the human annulus fibrosus (AF) lamellae and compared their performances against measurements (tissue level uniaxial/biaxial tests and whole disc experiments).
Journal ArticleDOI

Novel biomarkers of intervertebral disc cells and evidence of stem cells in the intervertebral disc.

TL;DR: The results pave the way for further study of the response of individual disc cells to disease states and provide the basis for future disc regeneration therapies.
References
More filters
Journal ArticleDOI

Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc

TL;DR: A five-category grading scheme for assessing the gross morphology of midsagittal sections of the human lumbar intervertebral disc was developed and the ability of three observers to categorize a series of 68 discs with a wide spectrum of morphologies established the comprehensiveness of the classification.
Journal ArticleDOI

Investigation of the laminate structure of lumbar disc anulus fibrosus.

TL;DR: The structure of the lumbar disc anulus fibrosus was investigated using a layer-by-layer peeling technique and microscopic examination of various cut surfaces to identify mechanisms of layer interruption at local laminate irregularities.
Journal ArticleDOI

Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.

TL;DR: The relationship between change In hydratlon and swelling pressure was found to depend on the composition of the disc rather than on age or degree of degeneration, and could be predicted satisfactorily for a disc of known collagen and proteoglycan content.
Journal ArticleDOI

Hierarchical structure of the intervertebral disc.

TL;DR: A hierarchical model of the intervertebral disc has been developed that incorporates morphological gradients that include lamellae in the lateral and posterior aspects of the disc and collagen fibers in the anterior annulus fibrosus.
Journal ArticleDOI

Tensile Properties of the Human Lumbar Annulus Fibrosus

TL;DR: In this article, the tensile properties of the human Lumbar Annulus Fibrosus were investigated and the human lumbar annulus fibrosus was found to have a tensile tensile property.
Related Papers (5)