scispace - formally typeset
Journal ArticleDOI

Single lamellar mechanics of the human lumbar anulus fibrosus

TLDR
The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles.
Abstract
The mechanical behavior of the entire anulus fibrosus is determined essentially by the tensile properties of its lamellae, their fiber orientations, and the regional variation of these quantities. Corresponding data are rare in the literature. The paper deals with an in vitro study of single lamellar anulus lamellae and aims to determine (i) their tensile response and regional variation, and (ii) the orientation of lamellar collagen fibers and their regional variation. Fresh human body-disc-body units (L1–L2, n=11) from cadavers were cut midsagittally producing two hemidisc units. One hemidisc was used for the preparation of single lamellar anulus specimens for tensile testing, while the other one was used for the investigation of the lamellar fiber orientation. Single lamellar anulus specimens with adjacent bone fragments were isolated from four anatomical regions: superficial and deep lamellae (3.9±0.21 mm, mean ± SD, apart from the outer boundary surface of the anulus fibrosus) at ventro-lateral and dorsal positions. The specimens underwent cyclic uniaxial tensile tests at three different strain rates in 0.15 mol/l NaCl solution at 37°C, whereby the lamellar fiber direction was aligned with the load axis. For the characterization of the tensile behavior three moduli were calculated: Elow (0–0.1 MPa), Emedium (0.1–0.5 MPa) and Ehigh (0.5–1 MPa). Additionally, specimens were tested with the load axis transverse to the fiber direction. From the second hemidisc fiber angles with respect to the horizontal plane were determined photogrammetrically from images taken at six circumferential positions from ventral to dorsal and at three depth levels. Tensile moduli along the fiber direction were in the range of 28–78 MPa (regional mean values). Superficial lamellae have larger Emedium (p=0.017) and Ehigh (p=0.012) than internal lamellae, and the mean value of superficial lamellae is about three times higher than that of deep lamellae. Tensile moduli of ventro-lateral lamellae do not differ significantly from the tensile moduli of dorsal lamellae, and Elow is generally indifferent with respect to the anatomical region. Tensile moduli transverse to the fiber direction were about two orders of magnitude smaller (0.22±0.2 MPa, mean ± SD, n=5). Tensile properties are not correlated significantly with donor age. Only small viscoelastic effects were observed. The regional variation of lamellar fiber angle ϕ is described appropriately by a regression line |ϕ|=23.2+0.130×α (r2=0.55, p<0.001), where α is the polar angle associated with the circumferential position. The single anulus lamella may be seen as the elementary structural unit of the anulus fibrosus, and exhibits marked anisotropy and distinct regional variation of tensile properties and fiber angles. These features must be considered for appropriate physical and numerical modeling of the anulus fibrosus.

read more

Citations
More filters
Journal ArticleDOI

Bioprinting Tissue Analogues with Decellularized Extracellular Matrix Bioink for Regeneration and Tissue Models of Cartilage and Intervertebral Discs

TL;DR: The state‐of‐the‐art in cartilage and IVD dECM bioink preparation, material properties, and applications are highlighted and a vision is presented for how this field may continue to evolve in the future to empower the fabrication of scaffolds that serve as effective templates for guiding cellular assembly and organization toward the formation of functional cartilageand IVD tissues.
Journal ArticleDOI

Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.

TL;DR: The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within the intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces.
Dissertation

Numerical Modelling of the Human Cervical Spine in Frontal Impact

TL;DR: Using nanofiltration membranes for the recovery of phosphorous with a second type of technology for the Recovery of nitrogen is suggest to be a viable process.
Journal ArticleDOI

A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model.

TL;DR: The findings suggest that the annulus is subjected to higher stresses in vivo when under multidirectional tension.
Journal ArticleDOI

Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs.

TL;DR: Degeneration had a significant impact on residual stress/stretch and fiber stretch in the posterior AF, which is important for understanding herniation risk and directly simulating biochemical composition and distribution to study disc biomechanics with degeneration.
References
More filters
Journal ArticleDOI

Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc

TL;DR: A five-category grading scheme for assessing the gross morphology of midsagittal sections of the human lumbar intervertebral disc was developed and the ability of three observers to categorize a series of 68 discs with a wide spectrum of morphologies established the comprehensiveness of the classification.
Journal ArticleDOI

Investigation of the laminate structure of lumbar disc anulus fibrosus.

TL;DR: The structure of the lumbar disc anulus fibrosus was investigated using a layer-by-layer peeling technique and microscopic examination of various cut surfaces to identify mechanisms of layer interruption at local laminate irregularities.
Journal ArticleDOI

Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.

TL;DR: The relationship between change In hydratlon and swelling pressure was found to depend on the composition of the disc rather than on age or degree of degeneration, and could be predicted satisfactorily for a disc of known collagen and proteoglycan content.
Journal ArticleDOI

Hierarchical structure of the intervertebral disc.

TL;DR: A hierarchical model of the intervertebral disc has been developed that incorporates morphological gradients that include lamellae in the lateral and posterior aspects of the disc and collagen fibers in the anterior annulus fibrosus.
Journal ArticleDOI

Tensile Properties of the Human Lumbar Annulus Fibrosus

TL;DR: In this article, the tensile properties of the human Lumbar Annulus Fibrosus were investigated and the human lumbar annulus fibrosus was found to have a tensile tensile property.
Related Papers (5)