scispace - formally typeset
Open AccessPosted Content

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size

Reads0
Chats0
TLDR
This work proposes a small DNN architecture called SqueezeNet, which achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters and is able to compress to less than 0.5MB (510x smaller than AlexNet).
Abstract
Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet). The SqueezeNet architecture is available for download here: this https URL

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ear Recognition Based on Deep Unsupervised Active Learning

TL;DR: In this paper, the authors proposed an alternative to this approach: an initial training process called Deep Unsupervised Active Learning, where a classification model can incrementally acquire new knowledge during the testing phase without manual guidance or correction of decision making.
Proceedings ArticleDOI

Memory Requirements for Convolutional Neural Network Hardware Accelerators

TL;DR: It is shown that bandwidth and memory requirements for different networks, and occasionally for different layers within a network, can each vary by multiple orders of magnitude, which makes designing fast and efficient hardware for all CNN applications difficult.
Journal ArticleDOI

From Seizure Detection to Smart and Fully Embedded Seizure Prediction Engine: A Review

TL;DR: This review explores topics ranging from signal acquisition analog circuits to classification algorithms and dedicated digital signal processing circuits for detection and prediction purposes, to provide a comprehensive and useful guideline for the construction, implementation and optimization of wearable and integrated smart seizure prediction systems.
Journal ArticleDOI

An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning

TL;DR: This paper proposes a general end-to-end deep learning-based 3D reconstruction framework that enables that theoretically an arbitrary number of constraints can be incorporated to further improve the reconstruction accuracy.
Proceedings ArticleDOI

MobileNets for flower classification using TensorFlow

TL;DR: Experimental performance of MobileNets model on TensorFlow platform to retrain the flower category datasets is shown, which can greatly minimize the time and space for flower classification compromising the accuracy slightly.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)