scispace - formally typeset
Open AccessPosted Content

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size

Reads0
Chats0
TLDR
This work proposes a small DNN architecture called SqueezeNet, which achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters and is able to compress to less than 0.5MB (510x smaller than AlexNet).
Abstract
Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet). The SqueezeNet architecture is available for download here: this https URL

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices

TL;DR: Eyeriss v2 as mentioned in this paper is a DNN accelerator architecture designed for running compact and sparse DNNs, which can process sparse data directly in the compressed domain for both weights and activations and therefore is able to improve both processing speed and energy efficiency with sparse models.
Proceedings ArticleDOI

Deep Learning with Low Precision by Half-Wave Gaussian Quantization

TL;DR: An half-wave Gaussian quantizer (HWGQ) is proposed for forward approximation and shown to have efficient implementation, by exploiting the statistics of of network activations and batch normalization operations, and to achieve much closer performance to full precision networks than previously available low-precision networks.
Proceedings ArticleDOI

MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices

TL;DR: MobileBERT as mentioned in this paper is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
Journal ArticleDOI

Convergence of Edge Computing and Deep Learning: A Comprehensive Survey

TL;DR: In this paper, a survey on the relationship between edge intelligence and intelligent edge computing is presented, and the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework, challenges and future trends of more pervasive and fine-grained intelligence.
Proceedings ArticleDOI

Unite the People: Closing the Loop Between 3D and 2D Human Representations

TL;DR: This work proposes a hybrid approach to 3D body model fits for multiple human pose datasets with an extended version of the recently introduced SMPLify method, and shows that UP-3D can be enhanced with these improved fits to grow in quantity and quality, which makes the system deployable on large scale.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)