scispace - formally typeset
Open AccessPosted Content

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size

Reads0
Chats0
TLDR
This work proposes a small DNN architecture called SqueezeNet, which achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters and is able to compress to less than 0.5MB (510x smaller than AlexNet).
Abstract
Recent research on deep neural networks has focused primarily on improving accuracy. For a given accuracy level, it is typically possible to identify multiple DNN architectures that achieve that accuracy level. With equivalent accuracy, smaller DNN architectures offer at least three advantages: (1) Smaller DNNs require less communication across servers during distributed training. (2) Smaller DNNs require less bandwidth to export a new model from the cloud to an autonomous car. (3) Smaller DNNs are more feasible to deploy on FPGAs and other hardware with limited memory. To provide all of these advantages, we propose a small DNN architecture called SqueezeNet. SqueezeNet achieves AlexNet-level accuracy on ImageNet with 50x fewer parameters. Additionally, with model compression techniques we are able to compress SqueezeNet to less than 0.5MB (510x smaller than AlexNet). The SqueezeNet architecture is available for download here: this https URL

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Towards Reverse-Engineering Black-Box Neural Networks

TL;DR: This paper showed that the revealed internal information helps generate more effective adversarial examples against the black-box model, which can be used for better protection of private content from automatic recognition models using adversarial example.
Journal ArticleDOI

FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks

TL;DR: The second generation of the FINN framework is described, an end-to-end tool that enables design-space exploration and automates the creation of fully customized inference engines on FPGAs that optimizes for given platforms, design targets, and a specific precision.
Proceedings ArticleDOI

ChamNet: Towards Efficient Network Design Through Platform-Aware Model Adaptation

TL;DR: The results show that adapting computation resources to building blocks is critical to model performance, and a novel algorithm to search for optimal architectures aided by efficient accuracy and resource (latency and/or energy) predictors is proposed.
Posted Content

Data-Driven Sparse Structure Selection for Deep Neural Networks

TL;DR: In this paper, a scaling factor is introduced to scale the outputs of specific structures, such as neurons, groups or residual blocks, and sparsity regularizations on these factors are added to solve this optimization problem by a modified Accelerated Proximal Gradient (APG) method.
Proceedings ArticleDOI

On-Demand Deep Model Compression for Mobile Devices: A Usage-Driven Model Selection Framework

TL;DR: A usage-driven selection framework is developed, referred to as AdaDeep, to automatically select a combination of compression techniques for a given DNN, that will lead to an optimal balance between user-specified performance goals and resource constraints.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Related Papers (5)