scispace - formally typeset
Open Access

Statistical Signal Processing

TLDR
An understanding of the convergence and synchronization of statistical signal processing algorithms in continuous time is developed, and an understanding of linear and nonlinear circuits for analog memory is explored, and the “soft-multiplexer” is proposed.
Abstract
This thesis proposes an alternate paradigm for designing computers using continuoustime analog circuits. Digital computation sacrifices continuous degrees of freedom. A principled approach to recovering them is to view analog circuits as propagating probabilities in a message passing algorithm. Within this framework, analog continuous-time circuits can perform robust, programmable, high-speed, low-power, cost-effective, statistical signal processing. This methodology will have broad application to systems which can benefit from low-power, high-speed signal processing and offers the possibility of adaptable/programmable high-speed circuitry at frequencies where digital circuitry would be cost and power prohibitive. Many problems must be solved before the new design methodology can be shown to be useful in practice: Continuous-time signal processing is not well understood. Analog computational circuits known as “soft-gates” have been previously proposed, but a complementary set of analog memory circuits is still lacking. Analog circuits are usually tunable, rarely reconfigurable, but never programmable. The thesis develops an understanding of the convergence and synchronization of statistical signal processing algorithms in continuous time, and explores the use of linear and nonlinear circuits for analog memory. An exemplary embodiment called the Noise Lock Loop (NLL) using these design primitives is demonstrated to perform direct-sequence spread-spectrum acquisition and tracking functionality and promises order-of-magnitude wins over digital implementations. A building block for the construction of programmable analog gate arrays, the “soft-multiplexer” is also proposed. Thesis Supervisor: Neil Gershenfeld Title: Associate Professor

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Hyperspectral Remote Sensing Data Analysis and Future Challenges

TL;DR: A tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing.
Journal ArticleDOI

Hyperspectral Subspace Identification

TL;DR: This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery, which is eigen decomposition based, unsupervised, and fully automatic.
Journal ArticleDOI

Analog Beamforming in MIMO Communications With Phase Shift Networks and Online Channel Estimation

TL;DR: This paper considers the design of the analog and digital beamforming coefficients, for the case of narrowband signals, and proposes the optimal analog beamformer to minimize the mean squared error between the desired user and its receiver estimate.
Proceedings ArticleDOI

Sensitivity to basis mismatch in compressed sensing

TL;DR: This paper establishes achievable bounds for the l1 error of the best k -term approximation and derives bounds, with similar growth behavior, for the basis pursuit l1 recovery error, indicating that the sparse recovery may suffer large errors in the presence of basis mismatch.
Journal ArticleDOI

Compact polarimetry overview and applications assessment

TL;DR: A synthetic aperture radar (SAR) with hybrid-polarity (CL-pol) architecture transmits circular polarization and receives two orthogonal, mutually coherent linear polarizations, which is one manifestation of compact polarimetry as mentioned in this paper.
References
More filters
Journal ArticleDOI

A new look at the statistical model identification

TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Journal ArticleDOI

Estimating the Dimension of a Model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Book

Matrix computations

Gene H. Golub