scispace - formally typeset
Open AccessJournal ArticleDOI

Supercontinuum generation in submicron fibre waveguides

TLDR
Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process to generate a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.
Abstract
Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process. In just cm of either waveguide, ns pulses from a low-power 532-nm microchip laser generated a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.

read more

Citations
More filters
Journal ArticleDOI

Supercontinuum generation in photonic crystal fiber

TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Journal ArticleDOI

Photonic-Crystal Fibers

TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Journal ArticleDOI

Nonlinear optics in photonic nanowires

TL;DR: Photonic nanowires provide the maximal confinement of light for index guiding structures enabling large enhancement of nonlinear interactions and group-velocity dispersion engineering, which makes them ideally suited for many nonlinear optical applications including the generation of single-cycle pulses and optical processing with sub-mW powers.

Supercontinuum generation, photonic crystal fiber

TL;DR: In this article, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Journal ArticleDOI

Optical fibre nanowires and microwires: a review

TL;DR: In this paper, the authors review the fundamentals and applications of nanowires and microwires manufactured from optical fibres and present a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness.
References
More filters
Journal ArticleDOI

Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm

TL;DR: In this article, the authors demonstrate experimentally that air-silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths, and exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared.
PatentDOI

Subwavelength-diameter silica wires for low-loss optical waveguiding

TL;DR: In this article, a two-step process is described to generate a micrometer sized diameter silica preform fiber, and then the preform is drawn while coupled to a support element to form a nanometer sized diameter fiber.
Journal ArticleDOI

The shape of fiber tapers

TL;DR: In this article, a model for the shape of optical fiber tapers, formed by stretching a fiber in a heat source of varying length, is presented, and a complete practical procedure for the formation of fiber taper with any reasonable shape is thus presented.
Journal ArticleDOI

Supercontinuum generation in tapered fibers

TL;DR: In this paper, a supercontinuum light with a spectrum more than two octaves broad (370-1545 nm at the 20-dB level) was generated in a standard telecommunications fiber by femtosecond pulses from an unamplified Ti:sapphire laser.
Journal ArticleDOI

Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides

TL;DR: Air-clad subwavelength-diameter wires have interesting properties such as tight-confinement ability, enhanced evanescent fields and large waveguide dispersions that are very promising for developing future microphotonic devices with subwa wavelength-width structures.
Related Papers (5)