scispace - formally typeset
Journal ArticleDOI

Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries

Reads0
Chats0
TLDR
In this article, a P2-phase Na0.67[Mn0.65Ni0.15Co 0.15Al 0.2]O2 microflakes are synthesized by a simple sol-gel method and tested as a Na+ ion storage cathode.
Abstract
Stable Na+ ion storage cathodes with adequate reversible capacity are now greatly needed for enabling Na-ion battery technology for large scale and low cost electric storage applications. In light of the superior Li+ ion storage performance of layered oxides, pure P2-phase Na0.67[Mn0.65Ni0.15Co0.2]O2 microflakes are synthesized by a simple sol–gel method and tested as a Na+ ion storage cathode. These layered microflakes exhibit a considerably high reversible capacity of 141 mA h g−1 and a slow capacity decay to 125 mA h g−1 after 50 cycles, showing much better cyclability than previous NaMnO2 compounds. To further enhance the structural and cycling stability, we partially substituted Co3+ by Al3+ ions in the transition-metal layer to synthesize Na0.67[Mn0.65Ni0.15Co0.15Al0.05]O2. As expected, the Al-substituted material demonstrates a greatly improved cycling stability with a 95.4% capacity retention over 50 cycles, possibly serving as a high capacity and stable cathode for Na-ion battery applications.

read more

Citations
More filters
Journal ArticleDOI

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage

TL;DR: In this paper, a variety of electrode materials including cathodes and anodes as well as electrolytes for room-temperature stationary sodium-ion batteries are briefly reviewed and compared the difference in storage behavior between Na and Li in their analogous electrodes and summarize the sodium storage mechanisms in available electrode materials.
Journal ArticleDOI

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries

TL;DR: In this article, a comprehensive review of layered oxides (NaTMO2, TM = Ti, V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a viable Na-ion battery cathode is presented.
Journal ArticleDOI

Update on Na-based battery materials. A growing research path

TL;DR: In this paper, the feasibility of two novel energy storage systems: Na-aqueous batteries and Na-O2 technology is explored, and new advances on nonaqueous Na-ion systems are summarized.
Journal ArticleDOI

Recent Progress in Electrode Materials for Sodium-Ion Batteries

TL;DR: In this paper, a review of recent progress on electrode materials for NIBs, including the discovery of new electrode materials and their Na storage mechanisms, is briefly reviewed, and efforts to enhance the electrochemical properties of NIB electrode materials as well as the challenges and perspectives involving these materials are discussed.
Journal ArticleDOI

Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance

TL;DR: A comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure-function-property relationship to design improved battery materials as mentioned in this paper.
References
More filters
Journal ArticleDOI

EXPGUI, a graphical user interface for GSAS

TL;DR: A description and justification of the EXPGUI program, which implements a graphical user interface and shell for the GSAS single-crystal and Rietveld package using the Tcl/Tk scripting language, is presented.
Journal ArticleDOI

Sodium‐Ion Batteries

TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Journal ArticleDOI

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems

TL;DR: In this paper, a review of Na-ion battery materials is presented, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.
Journal ArticleDOI

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries

TL;DR: In this paper, both negative and positive electrode materials in NIB are briefly reviewed, and it is concluded that cost-effective NIB can partially replace Li-ion batteries, but requires further investigation and improvement.
Journal ArticleDOI

Structural classification and properties of the layered oxides

TL;DR: In this article, a packing of octahedral and tetrahedral sheets where the alkali ions and the vacancies are distributed is characterized for the pseudo-2D materials AxMO2 and A2MO3 oxides.
Related Papers (5)