scispace - formally typeset
Open AccessPosted Content

Temporal Ensembling for Semi-Supervised Learning

Reads0
Chats0
TLDR
Self-ensembling is introduced, where it is shown that this ensemble prediction can be expected to be a better predictor for the unknown labels than the output of the network at the most recent training epoch, and can thus be used as a target for training.
Abstract
In this paper, we present a simple and efficient method for training deep neural networks in a semi-supervised setting where only a small portion of training data is labeled. We introduce self-ensembling, where we form a consensus prediction of the unknown labels using the outputs of the network-in-training on different epochs, and most importantly, under different regularization and input augmentation conditions. This ensemble prediction can be expected to be a better predictor for the unknown labels than the output of the network at the most recent training epoch, and can thus be used as a target for training. Using our method, we set new records for two standard semi-supervised learning benchmarks, reducing the (non-augmented) classification error rate from 18.44% to 7.05% in SVHN with 500 labels and from 18.63% to 16.55% in CIFAR-10 with 4000 labels, and further to 5.12% and 12.16% by enabling the standard augmentations. We additionally obtain a clear improvement in CIFAR-100 classification accuracy by using random images from the Tiny Images dataset as unlabeled extra inputs during training. Finally, we demonstrate good tolerance to incorrect labels.

read more

Citations
More filters
Posted Content

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning

TL;DR: This work introduces Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning that performs on par or better than the current state of the art on both transfer and semi- supervised benchmarks.
Proceedings Article

Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results

TL;DR: The recently proposed Temporal Ensembling has achieved state-of-the-art results in several semi-supervised learning benchmarks, but it becomes unwieldy when learning large datasets, so Mean Teacher, a method that averages model weights instead of label predictions, is proposed.
Posted Content

MixMatch: A Holistic Approach to Semi-Supervised Learning

TL;DR: MixMatch as discussed by the authors predicts low-entropy labels for unlabeled examples and combines them with labeled and unlabelled data using MixUp to obtain state-of-the-art results.
Posted Content

Unsupervised Data Augmentation for Consistency Training

TL;DR: A new perspective on how to effectively noise unlabeled examples is presented and it is argued that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning.
Proceedings Article

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

TL;DR: This paper demonstrates the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling, and shows that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Journal ArticleDOI

Bagging predictors

Leo Breiman
TL;DR: Tests on real and simulated data sets using classification and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy.
Posted Content

Distilling the Knowledge in a Neural Network

TL;DR: This work shows that it can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model and introduces a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse.
Related Papers (5)