scispace - formally typeset
Open AccessPosted Content

MixMatch: A Holistic Approach to Semi-Supervised Learning

TLDR
MixMatch as discussed by the authors predicts low-entropy labels for unlabeled examples and combines them with labeled and unlabelled data using MixUp to obtain state-of-the-art results.
Abstract
Semi-supervised learning has proven to be a powerful paradigm for leveraging unlabeled data to mitigate the reliance on large labeled datasets. In this work, we unify the current dominant approaches for semi-supervised learning to produce a new algorithm, MixMatch, that works by guessing low-entropy labels for data-augmented unlabeled examples and mixing labeled and unlabeled data using MixUp. We show that MixMatch obtains state-of-the-art results by a large margin across many datasets and labeled data amounts. For example, on CIFAR-10 with 250 labels, we reduce error rate by a factor of 4 (from 38% to 11%) and by a factor of 2 on STL-10. We also demonstrate how MixMatch can help achieve a dramatically better accuracy-privacy trade-off for differential privacy. Finally, we perform an ablation study to tease apart which components of MixMatch are most important for its success.

read more

Citations
More filters
Posted Content

A Simple Framework for Contrastive Learning of Visual Representations

TL;DR: It is shown that composition of data augmentations plays a critical role in defining effective predictive tasks, and introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning.
Posted Content

Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning

TL;DR: This work introduces Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning that performs on par or better than the current state of the art on both transfer and semi- supervised benchmarks.
Posted Content

Unsupervised Data Augmentation for Consistency Training

TL;DR: A new perspective on how to effectively noise unlabeled examples is presented and it is argued that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning.
Proceedings Article

FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

TL;DR: This paper demonstrates the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling, and shows that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks.
Journal ArticleDOI

A survey on semi-supervised learning

TL;DR: This survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches and algorithms developed over the past two decades, with an emphasis on the most prominent and currently relevant work.
References
More filters
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Posted Content

Decoupled Weight Decay Regularization

TL;DR: This work proposes a simple modification to recover the original formulation of weight decay regularization by decoupling the weight decay from the optimization steps taken w.r.t. the loss function, and provides empirical evidence that this modification substantially improves Adam's generalization performance.
Posted Content

Improved Techniques for Training GANs

TL;DR: In this article, the authors present a variety of new architectural features and training procedures that apply to the generative adversarial networks (GANs) framework and achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN.

Reading Digits in Natural Images with Unsupervised Feature Learning

TL;DR: A new benchmark dataset for research use is introduced containing over 600,000 labeled digits cropped from Street View images, and variants of two recently proposed unsupervised feature learning methods are employed, finding that they are convincingly superior on benchmarks.