scispace - formally typeset
Proceedings ArticleDOI

Temporal Modeling of EEG Signals using Block Sparse Variational Bayes Framework

TLDR
Results show that the proposed temporal model is highly useful in processing SSVEP-EEG signals irrespective of the recognition algorithms used.
Abstract
Compressed Sensing (CS) has emerged as an alternate method to acquire high dimensional signals effectively by exploiting the sparsity assumption. However, owing to non-sparse and non-stationary nature, it is extremely difficult to process Electroencephalograph (EEG) signals using CS paradigm. The success of Bayesian algorithms in recovering non-sparse signals has triggered the research in CS based models for neurophysiological signal processing. In this paper, we address the problem of Temporal Modeling of EEG Signals using Block Sparse Variational Bayes (SVB) Framework. Temporal correlation of EEG signals is modeled blockwise using normal variance scale mixtures parameterized via some random and deterministic parameters. Variational inference is exploited to infer the random parameters and Expectation Maximization (EM) is used to obtain the estimate of deterministic parameters. To validate the framework, we present experimental results for benchmark State Visual Evoked Potential (SSVEP) dataset with 40-target Brain-Computer Interface (BCI) speller using two frequency recognition algorithms viz. Canonical Correlation Analysis (CCA) and L1-regularized Multiway CCA. Results show that the proposed temporal model is highly useful in processing SSVEP-EEG signals irrespective of the recognition algorithms used.

read more

Citations
More filters
Book ChapterDOI

Some Comments on Variational Bayes Block Sparse Modeling with Correlated Entries

TL;DR: The effect of the threshold to prune out variance parameters of algorithms corresponding to several choices of marginals, viz. multivariate Jeffery prior, multivariate Laplace distribution and multivariate Student’s t distribution is discussed.
References
More filters
Journal ArticleDOI

Sparse bayesian learning and the relevance vector machine

TL;DR: It is demonstrated that by exploiting a probabilistic Bayesian learning framework, the 'relevance vector machine' (RVM) can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while offering a number of additional advantages.
Journal ArticleDOI

Compressive Sensing [Lecture Notes]

TL;DR: This lecture note presents a new method to capture and represent compressible signals at a rate significantly below the Nyquist rate, called compressive sensing, which employs nonadaptive linear projections that preserve the structure of the signal.
Book

A Mathematical Introduction to Compressive Sensing

TL;DR: A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build and serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject.
Journal ArticleDOI

Block-Sparse Signals: Uncertainty Relations and Efficient Recovery

TL;DR: The significance of the results presented in this paper lies in the fact that making explicit use of block-sparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
Journal ArticleDOI

Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs

TL;DR: A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain computer interface (BCI) that were higher than those using a widely used fast Fourier transform (FFT)-based spectrum estimation method.
Related Papers (5)