scispace - formally typeset
Journal ArticleDOI

The effects of shape on the interaction of colloidal particles

Lars Onsager
- 01 May 1949 - 
- Vol. 51, Iss: 4, pp 627-659
TLDR
In this article, it was shown that colloids in general are apt to exhibit considerable deviations from Raoult's law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions.
Abstract
Introdzution. The shapes of colloidal particles are often reasonably compact, so that no diameter greatly exceeds the cube root of the volume of the particle. On the other hand, we know many coiloids whose particles are greatly extended into sheets (bentonite), rods (tobacco virus), or flexible chains (myosin, various Iinear polymers). In some instances, a t least, solutions of such highly anisometric particles are known to exhibit remarkably great deviations from Raoult’s law, even to the extent that an anisotropic phase may separate from a solution in which the particles themselves occupy but one or two per cent of the total volume (tobacco virus, bentonite). We shall show in what follows how such results may arise from electrostatic repulsion between highly anisometric particles. Most colloids in aqueous solution owe their stability more or less to electric charges, so that each particle will repel others before they come into actual contact, and effectively claim for itself a greater volume than what it actuaily occupies. Thus, we can understand that colloids in general are apt to exhibit considerable deviations from Raoult’s law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions. However, if we tentatively increase the known size of the particles by the known range of the electric forces and multiply the resulting volume by four in order to compute the effective van der Waal’s co-volume, we have not nearly enough to explain why a solution of 2 per cent tobacco virus in 0.005 normal NaCZ forms two phases.

read more

Citations
More filters
Journal ArticleDOI

Interactions of highly charged colloidal cylinders with applications to double‐stranded DNA

TL;DR: New applications of the McMillan‐Mayer solution theory to dispersions of highly charged colloidal cylinders in monovalent salt solutions and thermodynamic solution properties are given in terms of the virial expansions relating to a Donnan membrane equilibrium.
Journal ArticleDOI

The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance.

TL;DR: The mechanisms underlying the formation of iridescent, vividly colored materials from colloidal liquid crystal suspensions of cellulose nanocrystals are reviewed and recent advances in structural control over the hierarchical assembly process are reported as a toolbox for the design of sophisticated optical materials.
Book ChapterDOI

The structure of small viruses.

TL;DR: This chapter considers those structural properties of TMV that can be accurately measured and provides a comparison of values of the diameters obtained from the X-ray work with those found by electron microscopy.
Journal ArticleDOI

Phase transitions in liquid crystals

TL;DR: A comprehensive overview of phase transition studies can be found in this article, where the authors identify the essential key concepts and points of difficulty associated with the study of phase transitions and discuss the most widely used experimental techniques for measuring these transition properties.
Journal ArticleDOI

Ordered phases of filamentous viruses

TL;DR: In this article, the authors focus on the equilibrium and non-equilibrium phase behavior of colloidal suspensions of rod-like viruses and treat the simplest case where the rods are the sole colloidal component and also the more complex phase behavior that arises in mixtures of binary rods and mixtures with spherical colloids, or with polymers.
References
More filters
Journal ArticleDOI

The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates

TL;DR: In this paper, it was shown that the Coulomb attraction between the micelles and the oppositely charged ions in the solution gives an excess of attractive force which must be balanced by the dispersive action of thermal agitation and another repulsive force.