scispace - formally typeset
Journal ArticleDOI

The effects of shape on the interaction of colloidal particles

Lars Onsager
- 01 May 1949 - 
- Vol. 51, Iss: 4, pp 627-659
TLDR
In this article, it was shown that colloids in general are apt to exhibit considerable deviations from Raoult's law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions.
Abstract
Introdzution. The shapes of colloidal particles are often reasonably compact, so that no diameter greatly exceeds the cube root of the volume of the particle. On the other hand, we know many coiloids whose particles are greatly extended into sheets (bentonite), rods (tobacco virus), or flexible chains (myosin, various Iinear polymers). In some instances, a t least, solutions of such highly anisometric particles are known to exhibit remarkably great deviations from Raoult’s law, even to the extent that an anisotropic phase may separate from a solution in which the particles themselves occupy but one or two per cent of the total volume (tobacco virus, bentonite). We shall show in what follows how such results may arise from electrostatic repulsion between highly anisometric particles. Most colloids in aqueous solution owe their stability more or less to electric charges, so that each particle will repel others before they come into actual contact, and effectively claim for itself a greater volume than what it actuaily occupies. Thus, we can understand that colloids in general are apt to exhibit considerable deviations from Raoult’s law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions. However, if we tentatively increase the known size of the particles by the known range of the electric forces and multiply the resulting volume by four in order to compute the effective van der Waal’s co-volume, we have not nearly enough to explain why a solution of 2 per cent tobacco virus in 0.005 normal NaCZ forms two phases.

read more

Citations
More filters
Journal ArticleDOI

An assembly of organic-inorganic composites using halloysite clay nanotubes

TL;DR: Halloysite is natural tubular clay suitable as a component of biocompatible nanosystems with specific functionalities as discussed by the authors, and the selective modification of halloysite inner/outer surfaces can be achieved by exploiting supramolecular and covalent interactions resulting in controlled colloidal stability adjusted to the solvent polarity.
Journal ArticleDOI

Graphene fiber: a new trend in carbon fibers

TL;DR: In this paper, the authors elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes, and summarized their versatile applications as multifunctional textiles.
Journal ArticleDOI

On Viscoelastic, Birefringent, and Swelling Properties of Laponite Clay Suspensions: Revisited Phase Diagram

TL;DR: In this paper, a more extended characterization of the viscoelastic properties of Laponite suspensions near the liquid/gel transition has been given, in the linear regime, on a very extended scale, from 10-5 to 102 rad/s.
Journal ArticleDOI

Biomechanical ordering of dense cell populations

TL;DR: A continuum model of collective cell dynamics based on equations for local cell density, velocity, and the tensor order parameter is developed and used to elucidate the mechanism of cell ordering and quantify the relationship between the dynamics of cell proliferation and the spatial structure of the population.
Journal ArticleDOI

Structure and interactions of biological helices

TL;DR: The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and polyand mesomorphic transitions.
References
More filters
Journal ArticleDOI

The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates

TL;DR: In this paper, it was shown that the Coulomb attraction between the micelles and the oppositely charged ions in the solution gives an excess of attractive force which must be balanced by the dispersive action of thermal agitation and another repulsive force.