scispace - formally typeset
Journal ArticleDOI

The effects of shape on the interaction of colloidal particles

Lars Onsager
- 01 May 1949 - 
- Vol. 51, Iss: 4, pp 627-659
Reads0
Chats0
TLDR
In this article, it was shown that colloids in general are apt to exhibit considerable deviations from Raoult's law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions.
Abstract
Introdzution. The shapes of colloidal particles are often reasonably compact, so that no diameter greatly exceeds the cube root of the volume of the particle. On the other hand, we know many coiloids whose particles are greatly extended into sheets (bentonite), rods (tobacco virus), or flexible chains (myosin, various Iinear polymers). In some instances, a t least, solutions of such highly anisometric particles are known to exhibit remarkably great deviations from Raoult’s law, even to the extent that an anisotropic phase may separate from a solution in which the particles themselves occupy but one or two per cent of the total volume (tobacco virus, bentonite). We shall show in what follows how such results may arise from electrostatic repulsion between highly anisometric particles. Most colloids in aqueous solution owe their stability more or less to electric charges, so that each particle will repel others before they come into actual contact, and effectively claim for itself a greater volume than what it actuaily occupies. Thus, we can understand that colloids in general are apt to exhibit considerable deviations from Raoult’s law and that crystalline phases retaining a fair proportion of solvent may separate from concentrated solutions. However, if we tentatively increase the known size of the particles by the known range of the electric forces and multiply the resulting volume by four in order to compute the effective van der Waal’s co-volume, we have not nearly enough to explain why a solution of 2 per cent tobacco virus in 0.005 normal NaCZ forms two phases.

read more

Citations
More filters
Journal ArticleDOI

Predictive Self-Assembly of Polyhedra into Complex Structures

TL;DR: 145 convex polyhedra whose assembly arises solely from their anisotropic shape are investigated, demonstrating a remarkably high propensity for thermodynamic self-assembly and structural diversity.
Book

Mechanics of the cell

TL;DR: The cell is studied as a model for three-dimensional networks, and the role of Membrane undulations in these networks is examined.
Journal ArticleDOI

Meso-scale turbulence in living fluids

TL;DR: In this paper, the authors combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems, and propose a minimal continuum model for incompressible bacterial flow.
MonographDOI

Colloidal Suspension Rheology

TL;DR: In this paper, the authors introduce colloid science and rheology, and present an overview of colloid physics and its applications in viscoelastic media. But they do not discuss the role of non-spherical particles.
Journal ArticleDOI

A Helical Polymer with a Cooperative Response to Chiral Information

TL;DR: The chiral nature of the polymer can be used to test theoretical ideas concerned with cholesteric liquid crystals, one of which solves the problem of assigning the helical sense.
References
More filters
Journal ArticleDOI

The Role of Attractive and Repulsive Forces in the Formation of Tactoids, Thixotropic Gels, Protein Crystals and Coacervates

TL;DR: In this paper, it was shown that the Coulomb attraction between the micelles and the oppositely charged ions in the solution gives an excess of attractive force which must be balanced by the dispersive action of thermal agitation and another repulsive force.