scispace - formally typeset
Journal ArticleDOI

The information capacity of the human motor system in controlling the amplitude of movement.

Paul M. Fitts
- 01 Sep 1992 - 
- Vol. 47, Iss: 6, pp 381-391
TLDR
The motor system in the present case is defined as including the visual and proprioceptive feedback loops that permit S to monitor his own activity, and the information capacity of the motor system is specified by its ability to produce consistently one class of movement from among several alternative movement classes.
Abstract
Information theory has recently been employed to specify more precisely than has hitherto been possible man's capacity in certain sensory, perceptual, and perceptual-motor functions (5, 10, 13, 15, 17, 18). The experiments reported in the present paper extend the theory to the human motor system. The applicability of only the basic concepts, amount of information, noise, channel capacity, and rate of information transmission, will be examined at this time. General familiarity with these concepts as formulated by recent writers (4, 11,20, 22) is assumed. Strictly speaking, we cannot study man's motor system at the behavioral level in isolation from its associated sensory mechanisms. We can only analyze the behavior of the entire receptor-neural-effector system. However, by asking 51 to make rapid and uniform responses that have been highly overlearned, and by holding all relevant stimulus conditions constant with the exception of those resulting from 5"s own movements, we can create an experimental situation in which it is reasonable to assume that performance is limited primarily by the capacity of the motor system. The motor system in the present case is defined as including the visual and proprioceptive feedback loops that permit S to monitor his own activity. The information capacity of the motor system is specified by its ability to produce consistently one class of movement from among several alternative movement classes. The greater the number of alternative classes, the greater is the information capacity of a particular type of response. Since measurable aspects of motor responses, such as their force, direction, and amplitude, are continuous variables, their information capacity is limited only by the amount of statistical variability, or noise, that is characteristic of repeated efforts to produce the same response. The information capacity of the motor Editor's Note. This article is a reprint of an original work published in 1954 in the Journal of Experimental Psychology, 47, 381391.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Software Engineering: A Practitioner's Approach

TL;DR: Software Engineering A Practitioner's Approach recognizes the dramatic growth in the field of software engineering and emphasizes new and important methods and tools used in the industry.
Journal ArticleDOI

A schema theory of discrete motor skill learning.

TL;DR: In this article, a new theory for discrete motor learning is proposed, based on the notion of the schema and uses a recall memory to produce movement and a recognition memory to evaluate response correctness.
Journal ArticleDOI

An Integrated Theory of the Mind.

TL;DR: The perceptual-motor modules, the goal module, and the declarative memory module are presented as examples of specialized systems in ACT-R, which consists of multiple modules that are integrated to produce coherent cognition.
Journal ArticleDOI

Noise in the nervous system.

TL;DR: How noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise are highlighted, and noise's potential benefits are discussed.
Journal ArticleDOI

Signal-dependent noise determines motor planning

TL;DR: This theory provides a simple and powerful unifying perspective for both eye and arm movement control and accurately predicts the trajectories of both saccades and arm movements and the speed–accuracy trade-off described by Fitt's law.
References
More filters
Journal Article

The mathematical theory of communication

TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Journal ArticleDOI

The Mathematical Theory of Communication

TL;DR: The theory of communication is extended to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message anddue to the nature of the final destination of the information.
Book

The Mathematical Theory of Communication

TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
Journal ArticleDOI

On the Rate of Gain of Information

TL;DR: The principal finding is that the rate of gain of information is, on the average, constant with respect to time, within the duration of one perceptual-motor act, and has a value of the order of five “bits” per second.
Related Papers (5)