scispace - formally typeset
Journal ArticleDOI

The Mathematics of Infectious Diseases

Herbert W. Hethcote
- 01 Dec 2000 - 
- Vol. 42, Iss: 4, pp 599-653
TLDR
Threshold theorems involving the basic reproduction number, the contact number, and the replacement number $R$ are reviewed for classic SIR epidemic and endemic models and results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups.
Abstract
Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number $R$ are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

read more

Citations
More filters
Journal ArticleDOI

The Structure and Function of Complex Networks

Mark Newman
- 01 Jan 2003 - 
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Journal ArticleDOI

Complex networks: Structure and dynamics

TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Journal ArticleDOI

Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission

TL;DR: A precise definition of the basic reproduction number, R0, is presented for a general compartmental disease transmission model based on a system of ordinary differential equations and it is shown that, if R0<1, then the disease free equilibrium is locally asymptotically stable; whereas if R 0>1,Then it is unstable.
Book

Modeling Infectious Diseases in Humans and Animals

TL;DR: Mathematical modeling of infectious dis-eases has progressed dramatically over the past 3 decades and continues to be a valuable tool at the nexus of mathematics, epidemiol-ogy, and infectious diseases research.
Journal ArticleDOI

Epidemic processes in complex networks

TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
References
More filters
Journal ArticleDOI

A contribution to the mathematical theory of epidemics

TL;DR: In this article, the authors considered the problem of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population.

A Contribution to the Mathematical Theory of Epidemics.

TL;DR: The present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.
Book

Ordinary differential equations

TL;DR: The fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ODEs was published by as discussed by the authors, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience.
Journal ArticleDOI

On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations

TL;DR: It is shown that in certain special cases one can easily compute or estimate the expected number of secondary cases produced by a typical infected individual during its entire period of infectiousness in a completely susceptible population.
Related Papers (5)