Showing papers in "Physics Reports in 2006"
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Abstract: Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web, are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering. © 2005 Elsevier B.V. All rights reserved.
8,690 citations
TL;DR: In this paper, the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP are reported.
Abstract: We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
1,188 citations
TL;DR: In this article, the physics of the 21 cm transition were reviewed, focusing on processes relevant at high redshifts, and the insights to be gained from such observations were described.
Abstract: Observations of the high-redshift Universe with the 21 cm hyperfine line of neutral hydrogen promise to open an entirely new window onto the early phases of cosmic structure formation. Here we review the physics of the 21 cm transition, focusing on processes relevant at high redshifts, and describe the insights to be gained from such observations. These include measuring the matter power spectrum at z ∼ 50 , observing the formation of the cosmic web and the first luminous sources, and mapping the reionization of the intergalactic medium. The epoch of reionization is of particular interest, because large HII regions will seed substantial fluctuations in the 21 cm background. We also discuss the experimental challenges involved in detecting this signal, with an emphasis on the Galactic and extragalactic foregrounds. These increase rapidly toward low frequencies and are especially severe for the highest redshift applications. Assuming that these difficulties can be overcome, the redshifted 21 cm line will offer unique insight into the high-redshift Universe, complementing other probes but providing the only direct, three-dimensional view of structure formation from z ∼ 200 to 6.
1,149 citations
TL;DR: In this paper, a pedagogical overview of flux compactifications in string theory is presented, from the basic ideas to the most recent developments, focusing on closed-string fluxes in type-II theories.
Abstract: We present a pedagogical overview of flux compactifications in string theory, from the basic ideas to the most recent developments. We concentrate on closed-string fluxes in type-II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyze the resulting four-dimensional effective theories, as well as some of its perturbative and non-perturbative corrections, focusing on moduli stabilization. Finally, we briefly review statistical studies of flux backgrounds.
1,051 citations
TL;DR: In this paper, a thorough treatment of universality for the system of three identical bosons is presented, and the universal information that is currently available for other 3-body systems is summarized.
Abstract: Particles with short-range interactions and a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-body sector, the universal properties are familiar and depend only on the scattering length a. In the 3-body sector for identical bosons, the universal properties include the existence of a sequence of shallow 3-body bound states called “Efimov states” and log-periodic dependence of scattering observables on the energy and the scattering length. The spectrum of Efimov states in the limit a → ± ∞ is characterized by an asymptotic discrete scaling symmetry that is the signature of renormalization group flow to a limit cycle. In this review, we present a thorough treatment of universality for the system of three identical bosons and we summarize the universal information that is currently available for other 3-body systems. Our basic tools are the hyperspherical formalism to provide qualitative insights, Efimov's radial laws for deriving the constraints from unitarity, and effective field theory for quantitative calculations. We also discuss topics on the frontiers of universality, including its extension to systems with four or more particles and the systematic calculation of deviations from universality.
968 citations
TL;DR: Weak gravitational lensing has several important effects on the cosmic microwave background (CMB): it changes the CMB power spectra, induces non-Gaussianities, and generates a B-mode polarization signal that is an important source of confusion for the signal from primordial gravitational waves.
Abstract: Weak gravitational lensing has several important effects on the cosmic microwave background (CMB): it changes the CMB power spectra, induces non-Gaussianities, and generates a B-mode polarization signal that is an important source of confusion for the signal from primordial gravitational waves. The lensing signal can also be used to help constrain cosmological parameters and lensing mass distributions. We review the origin and calculation of these effects. Topics include: lensing in General Relativity, the lensing potential, lensed temperature and polarization power spectra, implications for constraining inflation, non-Gaussian structure, reconstruction of the lensing potential, delensing, sky curvature corrections, simulations, cosmological parameter estimation, cluster mass reconstruction, and moving lenses/dipole lensing.
883 citations
TL;DR: In this paper, the authors describe how free-streaming massive neutrinos affect the evolution of cosmological perturbations, and summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of data, including the most recent analysis by the WMAP team.
Abstract: The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.
864 citations
TL;DR: The maximum entropy production principle (MEPP) as discussed by the authors was proposed to maximize the entropy production during nonequilibrium processes, and it has been applied in a wide range of applications.
Abstract: The tendency of the entropy to a maximum as an isolated system is relaxed to the equilibrium (the second law of thermodynamics) has been known since the mid-19th century. However, independent theoretical and applied studies, which suggested the maximization of the entropy production during nonequilibrium processes (the so-called maximum entropy production principle, MEPP), appeared in the 20th century. Publications on this topic were fragmented and different research teams, which were concerned with this principle, were unaware of studies performed by other scientists. As a result, the recognition and the use of MEPP by a wider circle of researchers were considerably delayed. The objectives of the present review consist in summation and analysis of studies dealing with MEPP. The first part of the review is concerned with the thermodynamic and statistical basis of the principle (including the relationship of MEPP with the second law of thermodynamics and Prigogine’s principle). Various existing applications of the principle to analysis of nonequilibrium systems will be discussed in the second part.
724 citations
TL;DR: In this paper, the authors review the X-ray spectra of the cores of clusters of galaxies, and discuss several viable mechanisms designed to cancel or distort the expected process of cooling.
Abstract: We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.
548 citations
TL;DR: The mass of an atom, and its inherent connection with the atomic and nuclear binding energy is a fundamental property, a unique fingerprint of the atomic nucleus as mentioned in this paper, and the importance of its mass ranges from verification of nuclear models to a test of the Standard Model, in particular with regard to the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.
Abstract: Like few other parameters, the mass of an atom, and its inherent connection with the atomic and nuclear binding energy is a fundamental property, a unique fingerprint of the atomic nucleus. Each nuclide comes with its own mass value different from all others. For short-lived exotic atomic nuclei the importance of its mass ranges from the verification of nuclear models to a test of the Standard Model, in particular with regard to the weak interaction and the unitarity of the Cabibbo–Kobayashi–Maskawa quark mixing matrix. In addition, accurate mass values are important for a variety of applications that extend beyond nuclear physics. Mass measurements on stable atoms now reach a relative uncertainty of about 10 - 11 . This extreme accuracy contributes, among other things, to metrology, for example the determination of fundamental constants and a new definition of the kilogram, and to tests of quantum electrodynamics and fundamental charge, parity, and time reversal symmetry. The introduction of Penning traps and storage rings into the field of mass spectrometry has made this method a prime choice for high-accuracy measurements on short-lived and stable nuclides. This is reflected in the large number of traps in operation, under construction, or planned world-wide. With the development and application of proper cooling and detection methods the trapping technique has the potential to provide the highest sensitivity and accuracy, even for very short-lived nuclides far from stability. This review describes the basics and recent progress made in ion trapping, cooling, and detection for high-accuracy mass measurements with emphasis on Penning traps. Special attention is devoted to the applications of accurate mass values in different fields of physics.
545 citations
TL;DR: A survey of the experimental, phenomenological, and theoretical status of the new heavy mesons is presented in this paper, where the properties of the X ( 3872 ), and the chiral doublet model are discussed.
Abstract: A survey of the experimental, phenomenological, and theoretical status of the new heavy mesons is presented. States discussed are the B c , h c , η c ′ , D s ( 2317 ) , D s ( 2460 ) , X ( 3872 ) , X ( 3940 ) , Y ( 3940 ) , Z ( 3930 ) , and Y ( 4260 ) . Quark models for spectra, strong decays, and hadronic interactions are reviewed and used to interpret the new states. New results for strong decay models, bound state decays, mesonic molecules, properties of the X ( 3872 ) , and the chiral doublet model are also presented.
TL;DR: In this article, a review of different regimes for fidelity decay in quantum information processes is presented, and some important applications and experiments are discussed, using time correlation functions as a backbone for the discussion.
Abstract: Fidelity serves as a benchmark for the reliability in quantum information processes, and has recently attracted much interest as a measure of the susceptibility of dynamics to perturbations. A rich variety of regimes for fidelity decay have emerged. The purpose of the present review is to describe these regimes, to give the theory that supports them, and to show some important applications and experiments. While we mention several approaches we use time correlation functions as a backbone for the discussion. Vanicek's uniform approach to semiclassics and random matrix theory provides important alternatives or complementary aspects. Other methods will be mentioned as we go along. Recent experiments in micro-wave cavities and in elastodynamic systems as well as suggestions for experiments in quantum optics shall be discussed.
Durham University1, University of Helsinki2, University of Wisconsin-Madison3, University of Rochester4, University of Catania5, Weizmann Institute of Science6, University of Warsaw7, University of Southampton8, CERN9, Lawrence Livermore National Laboratory10, Indian Institute of Science11, University of Montpellier12, Spanish National Research Council13, University of Zurich14, ETH Zurich15, Stanford University16, Northwestern University17, University of Pittsburgh18, Carleton University19, University of Hamburg20, Moscow State University21, University of Florida22, Paul Scherrer Institute23, University of Würzburg24, Imperial College London25, Florida State University26, University of Florence27, University of Bonn28, University at Buffalo29, RWTH Aachen University30, University of Sheffield31, University of California, Irvine32, Laboratoire d'Annecy-le-Vieux de physique des particules33, Brookhaven National Laboratory34, Argonne National Laboratory35, University of Bergen36, University of Mainz37, Centers for Medicare and Medicaid Services38, Lancaster University39, University of California, Santa Cruz40, University of Copenhagen41, University of Tokyo42, Austrian Academy of Sciences43, University of Manchester44, University College London45, University of Edinburgh46, University of California, Davis47, University of California, Berkeley48, University of Glasgow49, University of Barcelona50, Max Planck Society51, University of Chicago52, University of Turin53, Royal Holloway, University of London54, Kobe University55, University of Oslo56, Kyoto University57
TL;DR: In this paper, the authors discuss the possible interplay between the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.
Abstract: Physics at the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC/ILC Study Group so far is summarized in this report. Possible topics for future studies are outlined.
TL;DR: In this paper, the physical principles of ultrashort pulse generation in VECSELs are discussed, considering the role played by the semiconductor quantum well gain structure, and the saturable absorber.
Abstract: This paper will review and discuss pico- and femtosecond pulse generation from passively modelocked vertical–external-cavity surface-emitting semiconductor lasers (VECSELs). We shall discuss the physical principles of ultrashort pulse generation in these lasers, considering in turn the role played by the semiconductor quantum well gain structure, and the saturable absorber. The paper will analyze the fundamental performance limits of these devices, and review the results that have been demonstrated to date. Different types of semiconductor saturable absorber mirror (SESAM) design, and their characteristic dynamics, are described in detail; exploring the ultimate goal of moving to a wafer integration approach, in which the SESAM is integrated into the VECSEL structure with tremendous gain in capability. In particular, the contrast between VECSELs and diode-pumped solid-state lasers and edge-emitting diode lasers will be discussed. Optically pumped VECSELs have led to an improvement by more than two orders of magnitude to date in the average output power achievable from a passively modelocked ultrafast semiconductor laser.
TL;DR: In this article, a review of the literature on heavy-ion fusion at low energies is presented, with special emphasis given to the fusion of loosely bound stable and unstable projectiles, and the experimental challenges encountered in the measurement of the fusion cross section of these systems are pointed out.
Abstract: In this review the phenomenon of heavy-ion fusion at low energies is discussed in detail, with special emphasis given to the fusion of loosely bound stable and unstable projectiles. Experimental results on fusion and breakup of systems such as 6 Li, 7 Li, 9 Be, the two-neutron halo nuclei 6 He, the one-neutron halo nucleus 11 Be and the one-proton halo nucleus 8 B on light, medium and heavy targets are reviewed. An extensive review of the experimental methods and techniques used to measure the fusion and the breakup cross section is also presented, and the experimental challenges encountered in the measurement of the fusion cross section of these systems are pointed out. The theoretical description of the fusion of these loosely bound nuclei with a variety of targets is reviewed. Approaches based on the dynamic polarization potential arising from the strong coupling of the entrance channel to the breakup channel, as well as the Continuum Discretized Coupled Channels method are described at length. In contrast to the fusion of tightly bound projectiles, where enhancement of the complete fusion cross section at sub-barrier energies has been confirmed in the past, the fusion of loosely bound nuclei may exhibit hindrance effects, whose intensity is directly related to the Q -value of the breakup channel. The flux which is removed from the complete fusion channel feeds into what came to be known as the incomplete fusion channel. The elastic scattering of these systems is shown to shed light into the nature of the breakup polarization effect responsible for the fusion hindrance.
TL;DR: A review of the recent advances in the field and stresses quantum phenomena that require laser field intensities in excess of the relativistic threshold of ∼ 10 18 W / cm 2 is presented in this article.
Abstract: Recent advances in laser technology have pushed the frontier of maximum intensity achieved to about 10 22 W / cm 2 and investigators currently believe even higher intensities may be reached in the near future. This, combined with other breakthroughs on the fronts of short pulse generation and high repetition rates, have stimulated considerable progress, theoretical as well as experimental, in the field of laser–matter interactions. It is now possible to laser-accelerate electrons to a few hundred MeV and laser-induced pair-production and nuclear physics experiments have made significant progress. This article is devoted to a review of the recent advances in the field and stresses quantum phenomena that require laser field intensities in excess of the relativistic threshold of ∼ 10 18 W / cm 2 . Interactions with free electrons, with highly-charged ions and with atoms and clusters, are reviewed. Electron laser acceleration, atomic quantum dynamics, high harmonic generation, quantum electrodynamical effects and nuclear interactions in plasmas and ions, are among the important topics covered in the article.
TL;DR: In this article, the authors present theoretical characterizations of spatiotemporal dynamics and control based on the complex Ginzburg-Landau equation as well as models of the BZ and CO/Pt reactions.
Abstract: We review experimental and theoretical studies on the design and control of spatiotemporal behavior in chemical systems. A wide range of approaches have been pursued to control spatiotemporal dynamics, from periodic forcing of medium excitability to imposing static and dynamic heterogeneities and geometric constraints on the medium to global feedback with and without delays. We focus on the design and control of spatiotemporal dynamics in excitable and oscillatory media. Experimental examples are taken from the Belousov–Zhabotinsky (BZ) reaction and the oxidation reaction of CO on single crystal Pt, which have become paradigmatic chemical systems for studies of spatiotemporal dynamics. We present theoretical characterizations of spatiotemporal dynamics and control based on the complex Ginzburg–Landau equation as well as models of the BZ and CO/Pt reactions. Controlling spatiotemporal dynamics allows the realization of specific modes of behavior or may give rise to completely new types of behavior.
TL;DR: In this article, the first examples of hyper-deformed structures in nuclei with an axis ratio of 3:1 were presented, in the case of the beryllium isotopes.
Abstract: Clustering has long been known to be influential in the structure of ground and excited states of N = Z nuclei. States close to the decay thresholds are of particular interest, as clustering becomes dominant. Recent studies of loosely bound light neutron-rich nuclei have focused attention on structures based on clusters and additional valence neutrons, which give rise to covalent molecular binding effects. These nuclear molecules appear only at the extremes of deformation, in the deformed shell model they are referred to as super- and hyper-deformed. The beryllium isotopes provide the first examples of such states in nuclear physics. Further nuclear molecules consisting of unequal cores and also with three centres can be considered. These arise in the isotopes of neon and carbon, respectively. Molecular states in intrinsically asymmetric configurations give rise to parity (inversion) doublets. Examples of recent experiments demonstrating the molecular structure of the rotational bands in beryllium isotopes are presented. Further experimental evidence for bands as parity doublets in nuclei with valence neutrons in molecular orbits is also analysed. Work on chain states (nuclear polymers) in the carbon isotopes is discussed. These are the first examples of hyper-deformed structures in nuclei with an axis ratio of 3:1. Future perspectives are outlined based on a threshold diagram for covalent nuclear molecules with clusters bound via neutrons in covalent molecular configurations.
TL;DR: In this article, a theory for electron charge and spin transport with general magnetization directions is presented, based on the semiclassical concept of a vector spin accumulation, which can be used to predict spin-transfer torque for different material combinations.
Abstract: The electron transport properties of hybrid ferromagnetic|normal metal structures such as multilayers and spin valves depend on the relative orientation of the magnetization direction of the ferromagnetic elements. Whereas the contrast in the resistance for parallel and antiparallel magnetizations, the so-called giant magnetoresistance, is relatively well understood for quite some time, a coherent picture for non-collinear magnetoelectronic circuits and devices has evolved only recently. We review here such a theory for electron charge and spin transport with general magnetization directions that is based on the semiclassical concept of a vector spin accumulation. In conjunction with first-principles calculations of scattering matrices many phenomena, e.g. the current-induced spin-transfer torque, can be understood and predicted quantitatively for different material combinations.
TL;DR: The braneworld model of Dvali, Gabadadze and Porrati (DGP) is a theory where gravity is altered at immense distances by the excruciatingly slow leakage of gravity off our three-dimensional Universe and, as a modified-gravity theory, has pioneered this line of investigation.
Abstract: Cosmologists today are confronted with the perplexing reality that the universe is currently accelerating in its expansion. Nevertheless, the nature of the fuel that drives today's cosmic acceleration is an open and tantalizing mystery. There exists the intriguing possibility that the acceleration is not the manifestation of yet another mysterious ingredient in the cosmic gas tank (dark energy), but rather our first real lack of understanding of gravity itself, and even possibly a signal that there might exist dimensions beyond that which we can currently observe. The braneworld model of Dvali, Gabadadze and Porrati (DGP) is a theory where gravity is altered at immense distances by the excruciatingly slow leakage of gravity off our three-dimensional Universe and, as a modified-gravity theory, has pioneered this line of investigation. I review the underlying structure of DGP gravity and those phenomenological developments relevant to cosmologists interested in a pedagogical treatment of this intriguing model.
TL;DR: Applications of coarse-grained models to changes of the membrane topology are illustrated with studies of membrane fusion utilizing simulations and self-consistent field theory.
Abstract: We discuss the role coarse-grained models play in the investigation of the structure and thermodynamics of bilayer membranes, and we place them in the context of alternative approaches. Because they reduce the degrees of freedom and employ simple and soft effective potentials, coarse-grained models can provide rather direct insight into collective phenomena in membranes on large time and length scales. We present a summary of recent progress in this rapidly evolving field, and pay special attention to model development and computational techniques. Applications of coarse-grained models to changes of the membrane topology are illustrated with studies of membrane fusion utilizing simulations and self-consistent field theory.
TL;DR: In this article, the authors compare various strategies to coarse-grained simulation of a biological membrane and conclude that the results obtained by the various mesoscopic models are surprisingly consistent. But they do not discuss the effect of transmembrane peptides on the local structure of a membrane and the mechanism of vesicle fusion and fission.
Abstract: Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations, as model systems to understand the fundamental properties of biomembranes. The properties of lipid bilayers can be studied at different time and length scales. For some properties it is sufficient to envision a membrane as an elastic sheet, while for others it is important to take into account the details of the individual atoms. In this review, we focus on an intermediate level, where groups of atoms are lumped into pseudo-particles to arrive at a coarse-grained, or mesoscopic, description of a bilayer, which is subsequently studied using molecular simulation. The aim of this review is to compare various strategies to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used to obtain a better understanding of experimental systems. The advantage of coarse-grained models is that these can be simulated very efficiently, so that phenomena involving large systems, or requiring a large number of simulations, can be studied in detail. This is illustrated with the study of the relation between the phase behavior of a membrane and the structure of the phospholipids, and the membrane structural changes due to molecules (such as alcohols, cholesterol and anesthetics) adsorbed to the membrane. We then discuss the effect of transmembrane peptides on the local structure of a membrane and the mechanism of vesicle fusion and fission.
TL;DR: In this paper, the current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed, and the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters are given.
Abstract: The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, M W , the effective leptonic weak mixing angle, sin 2 θ eff , the anomalous magnetic moment of the muon, ( g - 2 ) μ , and the lightest CP -even MSSM Higgs boson mass, m h . We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly.
TL;DR: In this article, the authors review the history of tunneling times starting with the early work of MacColl, Hartman, and Wigner and show how this new understanding along with the concept of energy storage and release resolves all the outstanding tunneling time paradoxes.
Abstract: The issue of tunneling time is replete with controversy and paradoxes. The controversy stems from the fact that many tunneling time definitions seem to predict superluminal tunneling velocities. One prediction, termed the Hartman effect, states that the tunneling time becomes independent of barrier length for thick enough barriers, ultimately resulting in unbounded tunneling velocities. Experiments done with “single photons”, classical light waves, and microwaves all show this apparent superluminality. The origin of these paradoxical effects has been a mystery for decades. In this article, we review the history of tunneling times starting with the early work of MacColl, Hartman, and Wigner. We discuss some of the tunneling time definitions, with particular emphasis on the phase time (also known as the group delay or Wigner time) and the dwell time. The key experiments are reviewed. We then discuss our recent work, which suggests that the group delay in tunneling is not a transit time as has been assumed for decades. It is, in reality, a lifetime and hence should not be used to assign a speed of barrier traversal. We show how this new understanding along with the concept of energy storage and release resolves all the outstanding tunneling time paradoxes.
TL;DR: In this article, a hierarchy of geometrical structures is constructed on a null hypersurface, and the isolated horizon structure is reformulated in this framework by making use of some 3 + 1 slicing of spacetime.
Abstract: The isolated horizon formalism recently introduced by Ashtekar et al. aims at providing a quasi-local concept of a black hole in equilibrium in an otherwise possibly dynamical spacetime. In this formalism, a hierarchy of geometrical structures is constructed on a null hypersurface. On the other side, the 3 + 1 formulation of general relativity provides a powerful setting for studying the spacetime dynamics, in particular gravitational radiation from black hole systems. Here we revisit the kinematics and dynamics of null hypersurfaces by making use of some 3 + 1 slicing of spacetime. In particular, the additional structures induced on null hypersurfaces by the 3 + 1 slicing permit a natural extension to the full spacetime of geometrical quantities defined on the null hypersurface. This four-dimensional point of view facilitates the link between the null and spatial geometries. We proceed by reformulating the isolated horizon structure in this framework. We also reformulate previous works, such as Damour's black hole mechanics, and make the link with a previous 3 + 1 approach of black hole horizon, namely the membrane paradigm. We explicit all geometrical objects in terms of 3 + 1 quantities, putting a special emphasis on the conformal 3 + 1 formulation. This is in particular relevant for the initial data problem of black hole spacetimes for numerical relativity. Illustrative examples are provided by considering various slicings of Schwarzschild and Kerr spacetimes.
TL;DR: A review of theoretical and experimental aspects of multiphoton quantum optics can be found in this paper, where the authors focus on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations and for the practical applications of modern quantum mechanics.
Abstract: We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter–radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
TL;DR: In this article, the authors present a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems.
Abstract: This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm–Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.
TL;DR: In this paper, a full phase diagram was determined numerically, confirming earlier predictions for a merger of the black-hole and black-string phases and giving very strong evidence that the end-state of the Gregory-Laflamme instability is a black hole (in the dimension range 5 ⩽ D ⌽ 13 ).
Abstract: Black-hole uniqueness is known to fail in higher dimensions, and the multiplicity of black hole phases leads to phase transitions physics in General Relativity. The black-hole black-string transition is a prime realization of such a system and its phase diagram has been the subject of considerable study in the last few years. The most surprising results seem to be the appearance of critical dimensions where the qualitative behavior of the system changes, and a novel kind of topology change. Recently, a full phase diagram was determined numerically, confirming earlier predictions for a merger of the black-hole and black-string phases and giving very strong evidence that the end-state of the Gregory–Laflamme instability is a black hole (in the dimension range 5 ⩽ D ⩽ 13 ). Here this progress is reviewed, illustrated with figures, put into a wider context, and the still open questions are listed.
TL;DR: An overview of wavefunction-based correlation methods generalised for the application to solids is presented in this paper, where the authors focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localized orbitals.
Abstract: An overview of wavefunction-based correlation methods generalised for the application to solids is presented. Those methods based on a preceding Hartree–Fock treatment explicitly calculate the many-body wavefunction in contrast to the density-functional theory which relies on the ground-state density of the system. This review focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments is applied to a great variety of materials, from covalent semiconductors to ionic insulators, from large band-gap materials like diamond to the half-metal α -tin, from large molecules like fullerenes over polymers, graphite to three-dimensional solids. Rare-gas crystals where the binding is van der Waals like are treated as well as solid mercury, where the metallic binding is entirely due to correlation. Strongly correlated systems are examined and the correlation driven metal–insulator transition is described at an ab initio level.
TL;DR: In this paper, the authors review recent theoretical progress in understanding physical processes of composite effects on enhanced third-order nonlinear optical responses of various kinds of the recently proposed non-linear optical materials, namely, colloidal nanocrystals with inhomogeneous metallodielectric particles or a graded-index host, metallic films with inhmogeneous microstructures adjusted by ion doping or temperature gradient, composites with compositional gradation or graded particles.
Abstract: We review recent theoretical progress in understanding physical processes of composite effects on enhanced third-order nonlinear optical responses of various kinds of the recently-proposed nonlinear optical materials, namely, colloidal nanocrystals with inhomogeneous metallodielectric particles or a graded-index host, metallic films with inhomogeneous microstructures adjusted by ion doping or temperature gradient, composites with compositional gradation or graded particles, and magneto-controlled ferrofluid-based nonlinear optical materials.