scispace - formally typeset
Journal ArticleDOI

The nominal capacity of wireless mesh networks

Reads0
Chats0
TLDR
This article provides exact upper bounds on the throughput of any node in a WMN for a given topology and the set of active nodes, and shows that for WMNs the throughput decreases as O(1/n), where n is the total number of nodes in the network.
Abstract
Wireless mesh networks are an alternative technology for last-mile broadband Internet access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router; user packets are forwarded to and from an Internet-connected gateway in multihop fashion. The meshed topology provides good reliability, market coverage, and scalability, as well as low upfront investments. Despite the recent startup surge in WMNs, much research remains to be done before WMNs realize their full potential. This article tackles the problem of determining the exact capacity of a WMN. The key concept we introduce to enable this calculation is the bottleneck collision domain, defined as the geographical area of the network that bounds from above the amount of data that can be transmitted in the network. We show that for WMNs the throughput of each node decreases as O(1/n), where n is the total number of nodes in the network. In contrast with most existing work on ad hoc network capacity, we do not limit our study to the asymptotic case. In particular, for a given topology and the set of active nodes, we provide exact upper bounds on the throughput of any node. The calculation can be used to provision the network, to ensure quality of service and fairness. The theoretical results are validated by detailed simulations.

read more

Citations
More filters
Journal ArticleDOI

Wireless mesh networks: a survey

TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.
Journal ArticleDOI

Bandwidth- and power-efficient routing in linear wireless networks

TL;DR: A scheme based upon backward decoding that can remove all interference from the multihop system with an arbitrarily small rate loss is presented, and this new scheme is also used to demonstrate that rates of O(logN) are achievable over linear wireless networks even without synchronous cooperation.
Journal ArticleDOI

A Survey of Network Design Problems and Joint Design Approaches in Wireless Mesh Networks

TL;DR: The fundamental WMN design problems of interference modeling, power control, topology control, link scheduling, and routing are identified, and brief overviews are provided, together with a survey of the recent research on these topics, with special stress on joint design methods.
Journal ArticleDOI

Frontiers of Wireless and Mobile Communications

TL;DR: A perspective of some of the research frontiers of wireless and mobile communications is provided, identifying early stage key technologies of strategic importance and the new applications that they will enable.
Journal ArticleDOI

Wireless Mesh Networks: Current Challenges and Future Directions of Web-In-The-Sky

TL;DR: Key challenges that are impeding the rapid progress of wireless mesh networks are pointed out and the feasibility of some state-of-the-art technologies/protocols for adequately addressing these challenges are discussed.
References
More filters
Journal ArticleDOI

The capacity of wireless networks

TL;DR: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits persecond under a noninterference protocol.
Proceedings ArticleDOI

MACAW: a media access protocol for wireless LAN's

TL;DR: This paper studies media access protocols for a single channel wireless LAN being developed at Xerox Corporation's Palo Alto Research Center and develops a new protocol, MACAW, which uses an RTS-CTS-DS-DATA-ACK message exchange and includes a significantly different backoff algorithm.
Proceedings ArticleDOI

Capacity of Ad Hoc wireless networks

TL;DR: The question “Are large ad hoc networks feasible?” reduces to a question about the likely locality of communication in such networks, and it is shown that for total capacity to scale up with network size the average distance between source and destination nodes must remain small as the network grows.
Proceedings ArticleDOI

Mobility increases the capacity of ad-hoc wireless networks

TL;DR: The per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery, can be increased dramatically when the nodes are mobile rather than fixed, by exploiting node mobility as a type of multiuser diversity.
Proceedings ArticleDOI

A transmission control scheme for media access in sensor networks

TL;DR: This work proposes an adaptive rate control mechanism aiming to support media access control in sensor networks and finds that such a scheme is most effective in achieving the authors' fairness goal while being energy efficient for both low and high duty cycle of network traffic.