scispace - formally typeset
Open AccessJournal ArticleDOI

The Price of Robustness

Dimitris Bertsimas, +1 more
- 01 Jan 2004 - 
- Vol. 52, Iss: 1, pp 35-53
Reads0
Chats0
TLDR
In this paper, the authors propose an approach that attempts to make this trade-off more attractive by flexibly adjusting the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations.
Abstract
A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes. A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem. Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.

read more

Content maybe subject to copyright    Report

The price of robustness
IA meeting 14/12/2020
Bertsimas, Dimitris, and Melvyn Sim. "The price of
robustness." Operations research 52.1 (2004): 35-53.

The price of robustness
Context
Quote from the case study by Ben-Tal and Nemirovski (2000):!
«!In real-world applications of Linear Programming, one cannot
ignore the possibility that a small uncertainty in the data can
make the usual optimal solution completely meaningless from a
practical viewpoint.!»!
This observation raises the natural question of designing solution
approaches that are immune to data uncertainty; that is, they
are «"robust"».#
#
This paper designs a new robust approach that adresses the
issue of over-conservatism.

The price of robustness
Data uncertainty in linear optimization
Data uncertainty is in the matrix A. !
The coecients a_ij that are subjected to parameter uncertainty takes
values according to a symmetric distribution with a mean equal to the
nominal value a_ij in the interval [a_ij- â_ij, a_ij + â_ij].!
Row i -> J_i coecients subject to uncertainty !
Gamma_i = parameter to adjust the robustness of the proposed method
against the level of conservatism of the solution.!
0 <= Gamma_i <= J_i -> only a subset of the coecients will change in
order to adversely aect the solution.#
The higher Gamma_i, the more robust the solution is. With Gamma_i
= J_i -> maximum protection.
Linear optimization problem:

The price of robustness
Zero-one knap sack problem (MILP)
MILP:
An application of this problem is to maximize the
total value of goods to be loaded on a cargo that
has strict weight restrictions. The weight of the
individual item is assumed to be uncertain,
independent of other weights, and follows a
symmetric distribution.

The price of robustness
Zero-one knap sack problem (MILP)
The zero-one knapsack problem is the following discrete
optimization problem:
Let J the set of uncertain parameters ωj, with 0 |J| N. The weights ωj
with j J are subjected to parameter uncertainty takes values according to
a symmetric distribution with a mean equal to the nominal value ωj in the
interval [ωj ωˆj, ωj + ωˆj]. The parameter to adjust the robustness of the
approach is Γ, with 0 Γ |J| N.

Citations
More filters
Journal ArticleDOI

Adaptive Robust Transmission Expansion Planning Using Linear Decision Rules

TL;DR: In this article, a two-stage adaptive robust transmission expansion planning (AR-TEP) problem is considered considering the uncertainty of future load demand and future wind power production, and a tractable mixed-integer linear programming problem is solved by off-the-shelf optimization packages.
Journal ArticleDOI

Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization

TL;DR: A comprehensive review on the applications of chance-constrained optimization in power systems and a critical comparison of existing methods based on numerical simulations, conducted on standard power system test cases are provided.
Journal ArticleDOI

Project management: Recent developments and research opportunities

TL;DR: Project management has exhibited a remarkable growth in business interest over the last 15 years, as demonstrated by a 1000% increase in membership in the Project Management Institute since 1996 as mentioned in this paper, which is largely attributable to the emergence of many new diverse business applications that can be successfully managed as projects.
Journal ArticleDOI

Robustness to Joint-Torque-Tracking Errors in Task-Space Inverse Dynamics

TL;DR: This work proposes to improve the robustness of TSID by modeling uncertainties in the joint torques, either as Gaussian random variables or as bounded deterministic variables, and proposes ways to approximate the resulting optimization problem that lead to computation times below 1 ms.
Journal ArticleDOI

Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system

TL;DR: In this paper, a topology optimization for a linear elasticity design problem subjected to an uncertain load is proposed, where the design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of the uncertain load set.
References
More filters
Journal ArticleDOI

Robust Convex Optimization

TL;DR: If U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficientalgorithms such as polynomial time interior point methods.
Journal ArticleDOI

Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming

TL;DR: This note formulates a convex mathematical programming problem in which the usual definition of the feasible region is replaced by a significantly different strategy via set containment.
Journal ArticleDOI

Robust solutions of uncertain linear programs

TL;DR: It is shown that the RC of an LP with ellipsoidal uncertainty set is computationally tractable, since it leads to a conic quadratic program, which can be solved in polynomial time.
Journal ArticleDOI

Robust solutions of Linear Programming problems contaminated with uncertain data

TL;DR: The Robust Optimization methodology is applied to produce “robust” solutions of the above LPs which are in a sense immuned against uncertainty for the NETLIB problems.
Journal ArticleDOI

Robust Solutions to Least-Squares Problems with Uncertain Data

TL;DR: This work considers least-squares problems where the coefficient matrices A,b are unknown but bounded and minimize the worst-case residual error using (convex) second-order cone programming, yielding an algorithm with complexity similar to one singular value decomposition of A.
Related Papers (5)