scispace - formally typeset
Open AccessBook

The Regulation of Cellular Systems

TLDR
The basic equations of metabolic control analysis are rewritten in terms of co-response coefficients and internal response coefficients to describe the interaction of optimization methods and the interrelation with evolution.
Abstract
Introduction Fundamentals of biochemical modeling Balance equations Rate laws Generalized mass-action kinetics Various enzyme kinetic rate laws Thermodynamic flow-force relationships Power-law approximation Steady states of biochemical networks General considerations Stable and unstable steady states Multiple steady states Metabolic oscillations Background Mathematical conditions for oscillations Glycolytic oscillations Models of intracellular calcium oscillations A simple three-variable model with only monomolecular and bimolecular reactions Possible physiological significance of oscillations Stoichiometric analysis Conservation relations Linear dependencies between the rows of the stoichiometry matrix Non-negative flux vectors Elementary flux modes Thermodynamic aspects A generalized Wegscheider condition Strictly detailed balanced subnetworks Onsager's reciprocity reactions for coupled enyme reactions Time hierarchy in metabolism Time constants The quasi-steady-state approximation The Rapid equilibrium approximation Modal analysis Metabolic control analysis Basic definitions A systematic approach Theorems of metabolic control analysis Summation theorems Connectivity theorems Calculation of control coefficients using the theorems Geometrical interpretation Control analysis of various systems General remarks Elasticity coefficients for specific rate laws Control coefficients for simple hypothetical pathways Unbranched chains A branched system Control of erythrocyte energy metabolism The reaction system Basic model Interplay of ATP production and ATP consumption Glycolytic energy metabolism and osmotic states A simple model of oxidative phosphorylation A three-step model of serine biosynthesis Time-dependent control coefficients Are control coefficients always parameter independent? Posing the problem A system without conserved moieties A system with a conserved moiety A system including dynamic channeling Normalized versus non-normalized coefficients Analysis in terms of variables other than steady-state concentrations and fluxes General analysis Concentration ratios and free-energy-differences as state variables Entropy production as response variable Control of transient times Control of oscillations A second-order approach A quantitative approach to metabolic regulations Co-response coefficients Fluctuations of internal variables versus parameter perturbations Internal response coefficients Rephrasing the basic equations of metabolic control analysis in terms of co-response coefficients and internal response coefficients Control within and between subsystems Modular approach Overall elasticities Overall control coefficients Flux control insusceptibility Control exerted by elementary steps in enzyme catalysis Control analysis of metabolic channeling Comparison of metabolic control analysis and power-law formalism Computational aspects Application of optimization methods and the interrelation with evolution Optimization of the catalytic properties of single enzymes Basic assumptions Optimal values of elementary rate constants Optimal Michaelis constants Optimization of multienzyme systems Maximization of steady-state flux Influence of osmotic constraints and minimization of intermediate concentrations Minimization of transient times Optimal stoichiometries.

read more

Citations
More filters
Journal ArticleDOI

Metabolic pathways in the post-genome era.

TL;DR: Network-based pathways are emerging as an important paradigm for analysis of biological systems, and can be described by simple descriptions of individual components such as product yield, network robustness, correlated reactions and predictions of minimal media.

Saccharomyces cerevisiae phenotypes can be predicted using constraint based analysis of a genome-scale reconscructed metabolic network

TL;DR: Constrained-based analysis of a genome-scale metabolic network for the eukaryotic S. cerevisiae allows for computation of its integrated functions, producing in silico results that were consistent with observed phenotypic functions for ≈70–80% of the conditions considered.
Journal ArticleDOI

The challenges of in silico biology

TL;DR: Moving from a reductionist paradigm to one that views cells as systems will necessitate changes in both the culture and the practice of research.
Journal ArticleDOI

Metabolic modeling of microbial strains in silico

TL;DR: The use of quantitative analysis methods to generate testable hypotheses and drive experimentation at a whole-genome level signals the advent of a systemic modeling approach to cellular and molecular biology.
Journal ArticleDOI

Why is metabolic labour divided in nitrification

TL;DR: It is postulated that bacteria that completely oxidize ammonia to nitrate exist in such environments and shortening long pathways could increase growth rate, but this would reduce growth yield if the shorter pathway has fewer ATP-generating steps.
References
More filters
Journal ArticleDOI

Reaction-rate theory: fifty years after Kramers

TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Journal ArticleDOI

The geometry of biological time , by A. T. Winfree. Pp 544. DM68. Corrected Second Printing 1990. ISBN 3-540-52528-9 (Springer)

TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Journal ArticleDOI

Potential, impedance, and rectification in membranes

TL;DR: A theoretical picture has been presented based on the use of the general kinetic equations for ion motion under the influence of diffusion and electrical forces and on a consideration of possible membrane structures that shows qualitative agreement with the rectification properties and very good agreementwith the membrane potential data.
Book

Linear Multivariable Control: A Geometric Approach

TL;DR: In this article, the authors present an approach to controlability, feedback assignment, and pole shifting in a single linear functional model, where the observer is assumed to be a dynamic observer.