scispace - formally typeset
Journal ArticleDOI

The ubiquitin 26S proteasome proteolytic pathway

Reads0
Chats0
TLDR
Current understanding of the Ub/26S proteasome pathway in plants is described at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model, showing that this pathway is one of the most elaborate regulatory mechanisms in plants.
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis

TL;DR: Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions, and the developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels inArabidopsis in the future.
Journal ArticleDOI

Sugar Sensing and Signaling in Plants: Conserved and Novel Mechanisms

TL;DR: In this article, the experimental amenability of yeast as a unicellular model system has enabled the discovery of multiple sugar sensors and signaling pathways, and a central role for hexokinase (HXK) as conserved glucose sensor.
Journal ArticleDOI

The Arabidopsis F-box protein TIR1 is an auxin receptor

TL;DR: It is shown that TIR1 is an auxin receptor mediating transcriptional responses to auxin, and that auxin signalling involves the modification of SCFTIR1, which is an Aux/IAA transcriptional repressor proteins and the ubiquitin–ligase complex SC FTIR1.
Journal ArticleDOI

Auxin in action: signalling, transport and the control of plant growth and development.

TL;DR: This review will focus on the plant hormone auxin and its action, and highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of Auxin in controlling growth and patterning.
Journal ArticleDOI

The ubiquitin–26S proteasome system at the nexus of plant biology

TL;DR: Data accumulated over the past few years now show that the UPS targets numerous intracellular regulators that have central roles in hormone signalling, the regulation of chromatin structure and transcription, tailoring morphogenesis, responses to environmental challenges, self recognition and battling pathogens.
References
More filters
Journal ArticleDOI

The Ubiquitin System

TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Journal ArticleDOI

Mechanisms underlying ubiquitination.

TL;DR: Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type.
Journal ArticleDOI

Structure of 20S proteasome from yeast at 2.4 A resolution.

TL;DR: Two β-type subunits are processed to an intermediate form, indicating that an additional nonspecific endopeptidase activity may exist which is important for peptide hydrolysis and for the generation of ligands for class I molecules of the major histocompatibility complex.
Journal ArticleDOI

The 26S Proteasome: A Molecular Machine Designed for Controlled Proteolysis

TL;DR: In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway, and the 26S proteasome is a 2-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation.
Journal ArticleDOI

Aggresomes, inclusion bodies and protein aggregation.

TL;DR: This work has suggested that, in animal cells, aggregated proteins are specifically delivered to inclusion bodies by dynein-dependent retrograde transport on microtubules and this microtubule-dependent inclusion body is called an aggresome.
Related Papers (5)