scispace - formally typeset
Open Access

Transpiration of greenhouse crops : an aid to climate management

Reads0
Chats0
TLDR
In this paper, physical aspects of greenhouse climate are analyzed to show the direct interrelation between microclimate and crop transpiration, and it is shown that defining the transpiration rate as the criterion for the control of air humidity within a greenhouse would deliver a quantitative framework for that control.
Abstract
In this book some physical aspects of greenhouse climate are analyzed to show the direct interrelation between microclimate and crop transpiration. The energy balance of a greenhouse crop is shown to provide a sound physical framework to quantify the impact of microclimate on transpiration and to identify the constraints set on climate management by the termodynamic behaviour of the canopy. Before the relationship among microclimate, canopy temperature and transpiration is rendered in mathematical terms, a good deal of experimental work is necessary to establish sub-models for the heat transfer of the foliage, for the radiative transfer within the canopy and for the canopy resistance to vapour transfer. The sub-models are merged in a combination-type equation to obtain the temperature of a greenhouse crop and its transpiration. The resulting estimates are shown to reproduce accurately the temperature and transpiration of a greenhouse tomato crop, as measured at time intervals of a few minutes. To illustrate the practical application of the model thus developed a number of examples are presented. In particular, it is shown that defining the transpiration rate as the criterion for the control of air humidity within a greenhouse would deliver a quantitative framework for that control. That would largely enhance the efficiency of the (expensive) procedures applied at present for the control of humidity in greenhouses.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

An Adaptive Optimizer for Process Control

TL;DR: In this paper, an optimization based methodology for control of irrigation and nutrient supply using common measurements of greenhouse climate is developed using an optimization-based methodology for the identification of plant water needs and as an added benefit provides information for the creation of transpiration models.

Plant evapotranspiration in a greenhouse on mars

TL;DR: In this article, the air temperature and relative humidity control algorithm at 12 kPa with plants was evaluated at Mars greenhouse conditions and the evapotranspiration rate and estimated error of parameters for overall error calculation.
Journal ArticleDOI

Dynamic Energy Exchange Modelling for a Plastic-Covered Multi-Span Greenhouse Utilizing a Thermal Effluent from Power Plant

TL;DR: In this paper, the authors designed and validated an energy model of the experimental greenhouse growing Irwin mangoes and estimated the annual and maximum energy loads using building energy simulation (BES).
Dissertation

Élaboration d'un modèle du climat distribué à l'échelle de l'abri et de la plante en cultures ornementales sous serres : analyse des transferts de masse et de chaleur, bilans énergétiques

TL;DR: In this paper, the authors propose a model for simulating the evolution of the climate in a 2D environment, in the presence of chauffage and of diurnes or of a rayonnement solaire.
References
More filters
Journal ArticleDOI

Natural evaporation from open water, bare soil and grass

TL;DR: It is shown that a satisfactory account can be given of open water evaporation at four widely spaced sites in America and Europe, the results for bare soil receive a reasonable check in India, and application of theresults for turf shows good agreement with estimates of evapolation from catchment areas in the British Isles.
Journal Article

Evaporation and environment.

TL;DR: Progress towards a reconciliation of parallel concepts in meteorology and physiology is described, which stresses the importance of physiological restraint on the rate of transpiration from an irrigated field surrounded by dry land.
Journal ArticleDOI

Principles of Environmental Physics

TL;DR: In this paper, the second edition of the Second edition, the authors present a list of symbolic symbols for the field of environmental physical sciences, including the following: 1.GAS LAWS Pressure, volume and temperature Specific heats Lapse rate Water and water vapour Other gases 3. TRANSPORT LAWS General transfer equation Molecular transfer processes Diffusion coefficients Radiation laws 4. RADI ENVIRONMENT Solar radiation Terrestrial radiation Net radiation 5. MICROCLIMATOLOGY OF RADIATION (i) Interception Direct solar radiation Diffuse radiation Radiation in
Journal ArticleDOI

The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field

TL;DR: In this paper, the stomatal conductance of illuminated leaves is a function of current levels of temperature, vapour pressure deficit, leaf water potential (really turgor pressure) and ambient CO $_2$ concentration and when plotted against any one of these variables a scatter diagram results.
Book ChapterDOI

Yield response to water

TL;DR: In this paper, a methodology to quantify yield response to water through aggregate components which form the "handles" to assess crop yields under both adequate and limited water supply is presented, which takes into account maximum and actual crop yields as influenced by water deficits using yield response functions relating relative yield decrease and evapotranspiration deficits.