scispace - formally typeset
Open AccessProceedings Article

Variational Relevance Vector Machines

TLDR
This paper shows how the RVM can be formulated and solved within a completely Bayesian paradigm through the use of variational inference, thereby giving a posterior distribution over both parameters and hyperparameters.
Abstract
The Support Vector Machine (SVM) of Vapnik [9] has become widely established as one of the leading approaches to pattern recognition and machine learning. It expresses predictions in terms of a linear combination of kernel functions centred on a subset of the training data, known as support vectors. Despite its widespread success, the SVM suffers from some important limitations, one of the most significant being that it makes point predictions rather than generating predictive distributions. Recently Tipping [8] has formulated the Relevance Vector Machine (RVM), a probabilistic model whose functional form is equivalent to the SVM. It achieves comparable recognition accuracy to the SVM, yet provides a full predictive distribution, and also requires substantially fewer kernel functions. The original treatment of the RVM relied on the use of type II maximum likelihood (the 'evidence framework') to provide point estimates of the hyperparameters which govern model sparsity. In this paper we show how the RVM can be formulated and solved within a completely Bayesian paradigm through the use of variational inference, thereby giving a posterior distribution over both parameters and hyperparameters. We demonstrate the practicality and performance of the variational RVM using both synthetic and real world examples.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Machine Learning : A Probabilistic Perspective

TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Journal ArticleDOI

Sparse bayesian learning and the relevance vector machine

TL;DR: It is demonstrated that by exploiting a probabilistic Bayesian learning framework, the 'relevance vector machine' (RVM) can derive accurate prediction models which typically utilise dramatically fewer basis functions than a comparable SVM while offering a number of additional advantages.
Journal ArticleDOI

Bayesian Compressive Sensing

TL;DR: The underlying theory, an associated algorithm, example results, and comparisons to other compressive-sensing inversion algorithms in the literature are presented.
Journal ArticleDOI

Sparse Bayesian learning for basis selection

TL;DR: This paper adapts SBL to the signal processing problem of basis selection from overcomplete dictionaries, proving several results about the SBL cost function that elucidate its general behavior and providing solid theoretical justification for this application.
Journal ArticleDOI

Machinery health prognostics: A systematic review from data acquisition to RUL prediction

TL;DR: A review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction, which provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.
References
More filters

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Book

Statistical Decision Theory and Bayesian Analysis

TL;DR: An overview of statistical decision theory, which emphasizes the use and application of the philosophical ideas and mathematical structure of decision theory.

Fast training of support vector machines using sequential minimal optimization, advances in kernel methods

J. C. Platt
TL;DR: SMO breaks this large quadratic programming problem into a series of smallest possible QP problems, which avoids using a time-consuming numerical QP optimization as an inner loop and hence SMO is fastest for linear SVMs and sparse data sets.
Book

Fast training of support vector machines using sequential minimal optimization

TL;DR: In this article, the authors proposed a new algorithm for training Support Vector Machines (SVM) called SMO (Sequential Minimal Optimization), which breaks this large QP problem into a series of smallest possible QP problems.