Journal•ISSN: 0888-3270
Mechanical Systems and Signal Processing
Elsevier BV
About: Mechanical Systems and Signal Processing is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Vibration & Nonlinear system. It has an ISSN identifier of 0888-3270. Over the lifetime, 8696 publications have been published receiving 346550 citations. The journal is also known as: MSSP & Mechanical systems & signal processing.
Papers published on a yearly basis
Papers
More filters
TL;DR: This paper attempts to summarise and review the recent research and developments in diagnostics and prognostics of mechanical systems implementing CBM with emphasis on models, algorithms and technologies for data processing and maintenance decision-making.
Abstract: Condition-based maintenance (CBM) is a maintenance program that recommends maintenance decisions based on the information collected through condition monitoring. It consists of three main steps: data acquisition, data processing and maintenance decision-making. Diagnostics and prognostics are two important aspects of a CBM program. Research in the CBM area grows rapidly. Hundreds of papers in this area, including theory and practical applications, appear every year in academic journals, conference proceedings and technical reports. This paper attempts to summarise and review the recent research and developments in diagnostics and prognostics of mechanical systems implementing CBM with emphasis on models, algorithms and technologies for data processing and maintenance decision-making. Realising the increasing trend of using multiple sensors in condition monitoring, the authors also discuss different techniques for multiple sensor data fusion. The paper concludes with a brief discussion on current practices and possible future trends of CBM.
3,848 citations
TL;DR: This tutorial is intended to guide the reader in the diagnostic analysis of acceleration signals from rolling element bearings, in particular in the presence of strong masking signals from other machine components such as gears.
Abstract: This tutorial is intended to guide the reader in the diagnostic analysis of acceleration signals from rolling element bearings, in particular in the presence of strong masking signals from other machine components such as gears. Rather than being a review of all the current literature on bearing diagnostics, its purpose is to explain the background for a very powerful procedure which is successful in the majority of cases. The latter contention is illustrated by the application to a number of very different case histories, from very low speed to very high speed machines. The specific characteristics of rolling element bearing signals are explained in great detail, in particular the fact that they are not periodic, but stochastic, a fact which allows them to be separated from deterministic signals such as from gears. They can be modelled as cyclostationary for some purposes, but are in fact not strictly cyclostationary (at least for localised defects) so the term pseudo-cyclostationary has been coined. An appendix on cyclostationarity is included. A number of techniques are described for the separation, of which the discrete/random separation (DRS) method is usually most efficient. This sometimes requires the effects of small speed fluctuations to be removed in advance, which can be achieved by order tracking, and so this topic is also amplified in an appendix. Signals from localised faults in bearings are impulsive, at least at the source, so techniques are described to identify the frequency bands in which this impulsivity is most marked, using spectral kurtosis. For very high speed bearings, the impulse responses elicited by the sharp impacts in the bearings may have a comparable length to their separation, and the minimum entropy deconvolution technique may be found useful to remove the smearing effects of the (unknown) transmission path. The final diagnosis is based on “envelope analysis” of the optimally filtered signal, but despite the fact that this technique has been used for 40 years in analogue form, the advantages of more recent digital implementations are explained.
1,858 citations
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.
Abstract: Since 2006, deep learning (DL) has become a rapidly growing research direction, redefining state-of-the-art performances in a wide range of areas such as object recognition, image segmentation, speech recognition and machine translation. In modern manufacturing systems, data-driven machine health monitoring is gaining in popularity due to the widespread deployment of low-cost sensors and their connection to the Internet. Meanwhile, deep learning provides useful tools for processing and analyzing these big machinery data. The main purpose of this paper is to review and summarize the emerging research work of deep learning on machine health monitoring. After the brief introduction of deep learning techniques, the applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder (AE) and its variants, Restricted Boltzmann Machines and its variants including Deep Belief Network (DBN) and Deep Boltzmann Machines (DBM), Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). In addition, an experimental study on the performances of these approaches has been conducted, in which the data and code have been online. Finally, some new trends of DL-based machine health monitoring methods are discussed.
1,569 citations
TL;DR: This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics.
Abstract: Rotating machinery covers a broad range of mechanical equipment and plays a significant role in industrial applications. It generally operates under tough working environment and is therefore subject to faults, which could be detected and diagnosed by using signal processing techniques. Empirical mode decomposition (EMD) is one of the most powerful signal processing techniques and has been extensively studied and widely applied in fault diagnosis of rotating machinery. Numerous publications on the use of EMD for fault diagnosis have appeared in academic journals, conference proceedings and technical reports. This paper attempts to survey and summarize the recent research and development of EMD in fault diagnosis of rotating machinery, providing comprehensive references for researchers concerning with this topic and helping them identify further research topics. First, the EMD method is briefly introduced, the usefulness of the method is illustrated and the problems and the corresponding solutions are listed. Then, recent applications of EMD to fault diagnosis of rotating machinery are summarized in terms of the key components, such as rolling element bearings, gears and rotors. Finally, the outstanding open problems of EMD in fault diagnosis are discussed and potential future research directions are identified. It is expected that this review will serve as an introduction of EMD for those new to the concepts, as well as a summary of the current frontiers of its applications to fault diagnosis for experienced researchers.
1,410 citations
TL;DR: The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
Abstract: Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
1,289 citations