scispace - formally typeset
Journal ArticleDOI

Visual-inertial navigation, mapping and localization: A scalable real-time causal approach

TLDR
An integrated approach to ‘loop-closure’, that is the recognition of previously seen locations and the topological re-adjustment of the traveled path, is described, where loop-closure can be performed without the need to re-compute past trajectories or perform bundle adjustment.
Abstract
We describe a model to estimate motion from monocular visual and inertial measurements. We analyze the model and characterize the conditions under which its state is observable, and its parameters are identifiable. These include the unknown gravity vector, and the unknown transformation between the camera coordinate frame and the inertial unit. We show that it is possible to estimate both state and parameters as part of an on-line procedure, but only provided that the motion sequence is â??rich enoughâ??, a condition that we characterize explicitly. We then describe an efficient implementation of a filter to estimate the state and parameters of this model, including gravity and camera-to-inertial calibration. It runs in real-time on an embedded platform. We report experiments of continuous operation, without failures, re-initialization, or re-calibration, on paths of length up to 30 km. We also describe an integrated approach to â??loop-closureâ??, that is the recognition of previously seen locations and the topological re-adjustment of the traveled path. It represents visual features relative to the global orientation reference provided by the gravity vector estimated by the filter, and relative to the scale provided by their known position within the map; these features are organized into â??locationsâ?? defined by visibility constraints, represented in a topological graph, where loop-closure can be performed without the need to re-compute past trajectories or perform bundle adjustment. The software infrastructure as well as the embedded platform is described in detail in a previous technical report.

read more

Citations
More filters
Journal ArticleDOI

Keyframe-based visual-inertial odometry using nonlinear optimization

TL;DR: This work forms a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms and compares the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter.
Journal ArticleDOI

Visual Odometry [Tutorial]

TL;DR: Visual odometry is the process of estimating the egomotion of an agent (e.g., vehicle, human, and robot) using only the input of a single or If multiple cameras attached to it, and application domains include robotics, wearable computing, augmented reality, and automotive.
Journal ArticleDOI

Visual simultaneous localization and mapping: a survey

TL;DR: A brief and comprehensible review of the state-of-the-art computer vision techniques employed in visual SLAM, such as detection, description and matching of salient features, image recognition and retrieval, among others, are provided.
Journal ArticleDOI

High-precision, consistent EKF-based visual-inertial odometry

TL;DR: A novel, real-time EKF-based VIO algorithm is proposed, which achieves consistent estimation by ensuring the correct observability properties of its linearized system model, and performing online estimation of the camera-to-inertial measurement unit (IMU) calibration parameters.
Proceedings ArticleDOI

Robust visual inertial odometry using a direct EKF-based approach

TL;DR: A monocular visual-inertial odometry algorithm which achieves accurate tracking performance while exhibiting a very high level of robustness by directly using pixel intensity errors of image patches, leading to a truly power-up-and-go state estimation system.
References
More filters
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Proceedings Article

An iterative image registration technique with an application to stereo vision

TL;DR: In this paper, the spatial intensity gradient of the images is used to find a good match using a type of Newton-Raphson iteration, which can be generalized to handle rotation, scaling and shearing.
Journal ArticleDOI

Term Weighting Approaches in Automatic Text Retrieval

TL;DR: This paper summarizes the insights gained in automatic term weighting, and provides baseline single term indexing models with which other more elaborate content analysis procedures can be compared.
Proceedings ArticleDOI

Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories

TL;DR: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence that exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories.
Related Papers (5)