scispace - formally typeset
Open AccessProceedings ArticleDOI

X-Stream: edge-centric graph processing using streaming partitions

TLDR
X-Stream is novel in using an edge-centric rather than a vertex-centric implementation of this model, and streaming completely unordered edge lists rather than performing random access, and competes favorably with existing systems for graph processing.
Abstract
X-Stream is a system for processing both in-memory and out-of-core graphs on a single shared-memory machine. While retaining the scatter-gather programming model with state stored in the vertices, X-Stream is novel in (i) using an edge-centric rather than a vertex-centric implementation of this model, and (ii) streaming completely unordered edge lists rather than performing random access. This design is motivated by the fact that sequential bandwidth for all storage media (main memory, SSD, and magnetic disk) is substantially larger than random access bandwidth.We demonstrate that a large number of graph algorithms can be expressed using the edge-centric scatter-gather model. The resulting implementations scale well in terms of number of cores, in terms of number of I/O devices, and across different storage media. X-Stream competes favorably with existing systems for graph processing. Besides sequential access, we identify as one of the main contributors to better performance the fact that X-Stream does not need to sort edge lists during preprocessing.

read more

Content maybe subject to copyright    Report

Citations
More filters

What is Twitter

Proceedings ArticleDOI

GraphX: graph processing in a distributed dataflow framework

TL;DR: This paper introduces GraphX, an embedded graph processing framework built on top of Apache Spark, a widely used distributed dataflow system and demonstrates that GraphX achieves an order of magnitude performance gain over the base dataflow framework and matches the performance of specialized graph processing systems while enabling a wider range of computation.
ReportDOI

Large-scale Graph Computation on Just a PC

Aapo Kyrola
TL;DR: This work presents GraphChi, a disk-based system for computing efficiently on graphs with billions of edges, and builds on the basis of Parallel Sliding Windows to propose a new data structure Partitioned Adjacency Lists, which is used to design an online graph database graphChi-DB.
Proceedings ArticleDOI

Gemini: a computation-centric distributed graph processing system

TL;DR: Gemini is presented, a distributed graph processing system that applies multiple optimizations targeting computation performance to build scalability on top of efficiency and significantly outperforms all well-known existing distributed graphprocessing systems.
Proceedings Article

GridGraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning

TL;DR: GridGraph can stream the edges and apply on-the-fly vertex updates, thus reduce the I/O amount required for computation, and is even competitive with distributed systems, and provides significant cost efficiency in cloud environment.
References
More filters
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Proceedings Article

The PageRank Citation Ranking : Bringing Order to the Web

TL;DR: This paper describes PageRank, a mathod for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them, and shows how to efficiently compute PageRank for large numbers of pages.
Book

Algebraic Graph Theory

TL;DR: The Laplacian of a Graph and Cuts and Flows are compared to the Rank Polynomial.
Proceedings ArticleDOI

What is Twitter, a social network or a news media?

TL;DR: In this paper, the authors have crawled the entire Twittersphere and found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks.
Proceedings ArticleDOI

Pregel: a system for large-scale graph processing

TL;DR: A model for processing large graphs that has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier.
Related Papers (5)