scispace - formally typeset
Search or ask a question

Showing papers on "Commonsense reasoning published in 2019"


Posted Content
TL;DR: ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language, is presented, extending the popular BERT architecture to a multi-modal two-stream model, pro-cessing both visual and textual inputs in separate streams that interact through co-attentional transformer layers.
Abstract: We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, pro-cessing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks -- visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval -- by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific models -- achieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.

1,241 citations


Proceedings Article
06 Aug 2019
TL;DR: The ViLBERT model as mentioned in this paper extends the BERT architecture to a multi-modal two-stream model, processing both visual and textual inputs in separate streams that interact through co-attentional transformer layers.
Abstract: We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, processing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks -- visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval -- by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific models -- achieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.

1,069 citations


Posted Content
TL;DR: A new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT), which adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input.
Abstract: We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input. In it, each element of the input is either of a word from the input sentence, or a region-of-interest (RoI) from the input image. It is designed to fit for most of the visual-linguistic downstream tasks. To better exploit the generic representation, we pre-train VL-BERT on the massive-scale Conceptual Captions dataset, together with text-only corpus. Extensive empirical analysis demonstrates that the pre-training procedure can better align the visual-linguistic clues and benefit the downstream tasks, such as visual commonsense reasoning, visual question answering and referring expression comprehension. It is worth noting that VL-BERT achieved the first place of single model on the leaderboard of the VCR benchmark. Code is released at \url{this https URL}.

822 citations


Proceedings ArticleDOI
15 Jun 2019
TL;DR: To move towards cognition-level understanding, a new reasoning engine is presented, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning.
Abstract: Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer. Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and high-quality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (~45%). To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (~65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.

687 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: ATOMIC as discussed by the authors ) is an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge, organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment" ).
Abstract: We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., “if X pays Y a compliment, then Y will likely return the compliment”). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.

523 citations


Proceedings ArticleDOI
01 Oct 2019
TL;DR: Social IQa as mentioned in this paper is a large-scale benchmark for commonsense reasoning about social situations, which contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations.
Abstract: We introduce Social IQa, the first large-scale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations (e.g., Q: “Jordan wanted to tell Tracy a secret, so Jordan leaned towards Tracy. Why did Jordan do this?” A: “Make sure no one else could hear”). Through crowdsourcing, we collect commonsense questions along with correct and incorrect answers about social interactions, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question. Empirical results show that our benchmark is challenging for existing question-answering models based on pretrained language models, compared to human performance (>20% gap). Notably, we further establish Social IQa as a resource for transfer learning of commonsense knowledge, achieving state-of-the-art performance on multiple commonsense reasoning tasks (Winograd Schemas, COPA).

388 citations


Proceedings ArticleDOI
06 Jun 2019
TL;DR: This work collects human explanations for commonsense reasoning in the form of natural language sequences and highlighted annotations in a new dataset called Common Sense Explanations to train language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation framework.
Abstract: Deep learning models perform poorly on tasks that require commonsense reasoning, which often necessitates some form of world-knowledge or reasoning over information not immediately present in the input. We collect human explanations for commonsense reasoning in the form of natural language sequences and highlighted annotations in a new dataset called Common Sense Explanations (CoS-E). We use CoS-E to train language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework. CAGE improves the state-of-the-art by 10% on the challenging CommonsenseQA task. We further study commonsense reasoning in DNNs using both human and auto-generated explanations including transfer to out-of-domain tasks. Empirical results indicate that we can effectively leverage language models for commonsense reasoning.

379 citations


Posted Content
TL;DR: The authors introduced WinoGrande, a large-scale dataset of 44k problems, inspired by the original Winograd Schema Challenge (WSC) design, but adjusted to improve both the scale and the hardness of the dataset.
Abstract: The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4-79.1%, which are 15-35% below human performance of 94.0%, depending on the amount of the training data allowed. Furthermore, we establish new state-of-the-art results on five related benchmarks - WSC (90.1%), DPR (93.1%), COPA (90.6%), KnowRef (85.6%), and Winogender (97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.

366 citations


Proceedings ArticleDOI
04 Sep 2019
TL;DR: In this paper, the authors proposed a textual inference framework for answering commonsense questions, which effectively utilizes external, structured commonsense knowledge graphs to perform explainable inferences, and achieved state-of-the-art performance on the CommonsenseQA dataset.
Abstract: Commonsense reasoning aims to empower machines with the human ability to make presumptions about ordinary situations in our daily life. In this paper, we propose a textual inference framework for answering commonsense questions, which effectively utilizes external, structured commonsense knowledge graphs to perform explainable inferences. The framework first grounds a question-answer pair from the semantic space to the knowledge-based symbolic space as a schema graph, a related sub-graph of external knowledge graphs. It represents schema graphs with a novel knowledge-aware graph network module named KagNet, and finally scores answers with graph representations. Our model is based on graph convolutional networks and LSTMs, with a hierarchical path-based attention mechanism. The intermediate attention scores make it transparent and interpretable, which thus produce trustworthy inferences. Using ConceptNet as the only external resource for Bert-based models, we achieved state-of-the-art performance on the CommonsenseQA, a large-scale dataset for commonsense reasoning.

246 citations


Posted Content
TL;DR: This study introduces a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations, and conceptualizes two new tasks -- Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and Abduction NLG: a conditional generation task for explaining given observations in natural language.
Abstract: Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation. While abduction has long been considered to be at the core of how people interpret and read between the lines in natural language (Hobbs et al., 1988), there has been relatively little research in support of abductive natural language inference and generation. We present the first study that investigates the viability of language-based abductive reasoning. We introduce a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations. Based on this dataset, we conceptualize two new tasks -- (i) Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and (ii) Abductive NLG: a conditional generation task for explaining given observations in natural language. On Abductive NLI, the best model achieves 68.9% accuracy, well below human performance of 91.4%. On Abductive NLG, the current best language generators struggle even more, as they lack reasoning capabilities that are trivial for humans. Our analysis leads to new insights into the types of reasoning that deep pre-trained language models fail to perform--despite their strong performance on the related but more narrowly defined task of entailment NLI--pointing to interesting avenues for future research.

226 citations


Posted Content
TL;DR: The authors introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others, and use them to recover social bias frames from unstructured text.
Abstract: Warning: this paper contains content that may be offensive or upsetting. Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but rather the implied meanings, that frame people's judgments about others. For example, given a statement that "we shouldn't lower our standards to hire more women," most listeners will infer the implicature intended by the speaker -- that "women (candidates) are less qualified." Most semantic formalisms, to date, do not capture such pragmatic implications in which people express social biases and power differentials in language. We introduce Social Bias Frames, a new conceptual formalism that aims to model the pragmatic frames in which people project social biases and stereotypes onto others. In addition, we introduce the Social Bias Inference Corpus to support large-scale modelling and evaluation with 150k structured annotations of social media posts, covering over 34k implications about a thousand demographic groups. We then establish baseline approaches that learn to recover Social Bias Frames from unstructured text. We find that while state-of-the-art neural models are effective at high-level categorization of whether a given statement projects unwanted social bias (80% F1), they are not effective at spelling out more detailed explanations in terms of Social Bias Frames. Our study motivates future work that combines structured pragmatic inference with commonsense reasoning on social implications.

Posted Content
TL;DR: This paper introduces Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions, and proposes a new architecture that improves over the competitive baselines.
Abstract: Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people's everyday narratives, asking such questions as "what might be the possible reason of ...?", or "what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at this https URL.

Proceedings ArticleDOI
31 Aug 2019
TL;DR: Cosmos QA as discussed by the authors ) is a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions, where the questions focus on reading between the lines, which in turn requires interpreting the likely causes and effects of events.
Abstract: Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people’s everyday narratives, asking such questions as “what might be the possible reason of ...?", or “what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at https://wilburone.github.io/cosmos.

Journal ArticleDOI
TL;DR: This work uses a fuzzy logic classifier to predict the degree of a particular emotion in AffectiveSpace and uses the combined model of deep convolutional neural networks and fuzzy logic is termed Convolutional Fuzzy Sentiment Classifier.

Posted Content
TL;DR: A constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning, and demonstrates that the learned generative Commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA by generating additional context.
Abstract: Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., {dog, frisbee, catch, throw}); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., "a man throws a frisbee and his dog catches it"). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge, and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 79k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance. Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA by generating additional context.

Posted Content
TL;DR: This paper proposes a textual inference framework for answering commonsense questions, which effectively utilizes external, structured commonsense knowledge graphs to perform explainable inferences.
Abstract: Commonsense reasoning aims to empower machines with the human ability to make presumptions about ordinary situations in our daily life. In this paper, we propose a textual inference framework for answering commonsense questions, which effectively utilizes external, structured commonsense knowledge graphs to perform explainable inferences. The framework first grounds a question-answer pair from the semantic space to the knowledge-based symbolic space as a schema graph, a related sub-graph of external knowledge graphs. It represents schema graphs with a novel knowledge-aware graph network module named KagNet, and finally scores answers with graph representations. Our model is based on graph convolutional networks and LSTMs, with a hierarchical path-based attention mechanism. The intermediate attention scores make it transparent and interpretable, which thus produce trustworthy inferences. Using ConceptNet as the only external resource for Bert-based models, we achieved state-of-the-art performance on the CommonsenseQA, a large-scale dataset for commonsense reasoning.

Proceedings ArticleDOI
14 Aug 2019
TL;DR: The authors introduced a simple yet powerful neural architecture for data that combines vision and natural language, which leverages referential information binding words to portions of the image in a single unified architecture.
Abstract: To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The “Bounding Boxes in Text Transformer” (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark, achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided.

Proceedings ArticleDOI
15 May 2019
TL;DR: This paper shows that the performance of three language models on WSC273 strongly improves when fine-tuned on a similar pronoun disambiguation problem dataset (denoted WSCR), and generates a large unsupervised WSC-like dataset.
Abstract: The Winograd Schema Challenge (WSC) dataset WSC273 and its inference counterpart WNLI are popular benchmarks for natural language understanding and commonsense reasoning. In this paper, we show that the performance of three language models on WSC273 consistently and robustly improves when fine-tuned on a similar pronoun disambiguation problem dataset (denoted WSCR). We additionally generate a large unsupervised WSC-like dataset. By fine-tuning the BERT language model both on the introduced and on the WSCR dataset, we achieve overall accuracies of 72.5% and 74.7% on WSC273 and WNLI, improving the previous state-of-the-art solutions by 8.8% and 9.6%, respectively. Furthermore, our fine-tuned models are also consistently more accurate on the “complex” subsets of WSC273, introduced by Trichelair et al. (2018).

Posted Content
TL;DR: Unicoder-VL as discussed by the authors learns joint representations of vision and language in a pre-training manner by using a multi-layer Transformer for the cross-modal pretraining.
Abstract: We propose Unicoder-VL, a universal encoder that aims to learn joint representations of vision and language in a pre-training manner. Borrow ideas from cross-lingual pre-trained models, such as XLM and Unicoder, both visual and linguistic contents are fed into a multi-layer Transformer for the cross-modal pre-training, where three pre-trained tasks are employed, including Masked Language Modeling (MLM), Masked Object Classification (MOC) and Visual-linguistic Matching (VLM). The first two tasks learn context-aware representations for input tokens based on linguistic and visual contents jointly. The last task tries to predict whether an image and a text describe each other. After pretraining on large-scale image-caption pairs, we transfer Unicoder-VL to caption-based image-text retrieval and visual commonsense reasoning, with just one additional output layer. We achieve state-of-the-art or comparable results on both two tasks and show the powerful ability of the cross-modal pre-training.

Posted Content
TL;DR: A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture.
Abstract: To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The "Bounding Boxes in Text Transformer" (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark (this https URL), achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided (this https URL).

Posted Content
02 Apr 2019
TL;DR: This paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding to support a better understanding of the state of the art, its limitations, and future challenges.
Abstract: Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

Posted Content
25 Sep 2019
TL;DR: This article proposed a novel adversarial training algorithm, FreeLB, that promotes higher invariance in the embedding space, by adding adversarial perturbations to word embeddings and minimizing the resultant adversarial risk inside different regions around input samples.
Abstract: Adversarial training, which minimizes the maximal risk for label-preserving input perturbations, has proved to be effective for improving the generalization of language models In this work, we propose a novel adversarial training algorithm, FreeLB, that promotes higher invariance in the embedding space, by adding adversarial perturbations to word embeddings and minimizing the resultant adversarial risk inside different regions around input samples To validate the effectiveness of the proposed approach, we apply it to Transformer-based models for natural language understanding and commonsense reasoning tasks Experiments on the GLUE benchmark show that when applied only to the finetuning stage, it is able to improve the overall test scores of BERT-base model from 783 to 794, and RoBERTa-large model from 885 to 888 In addition, the proposed approach achieves state-of-the-art single-model test accuracies of 8544\% and 6775\% on ARC-Easy and ARC-Challenge Experiments on CommonsenseQA benchmark further demonstrate that FreeLB can be generalized and boost the performance of RoBERTa-large model on other tasks as well Code is available at \url{this https URL

Book ChapterDOI
Wanjun Zhong1, Duyu Tang2, Nan Duan2, Ming Zhou2, Jiahai Wang1, Jian Yin1 
09 Oct 2019
TL;DR: In this paper, the authors propose to pre-train direct and indirect relational functions between concepts, and show that these pre-trained functions could be easily added to existing neural network models.
Abstract: Although neural network approaches achieve remarkable success on a variety of NLP tasks, many of them struggle to answer questions that require commonsense knowledge. We believe the main reason is the lack of commonsense connections between concepts. To remedy this, we provide a simple and effective method that leverages external commonsense knowledge base such as ConceptNet. We pre-train direct and indirect relational functions between concepts, and show that these pre-trained functions could be easily added to existing neural network models. Results show that incorporating commonsense-based function improves the state-of-the-art on three question answering tasks that require commonsense reasoning. Further analysis shows that our system discovers and leverages useful evidence from an external commonsense knowledge base, which is missing in existing neural network models and help derive the correct answer.

Posted Content
TL;DR: The authors investigated the extent to which state-of-the-art neural language representations, trained on a vast amount of natural language text, demonstrate physical commonsense reasoning and found that neural language models still only learn associations that are explicitly written down.
Abstract: Humans understand language based on the rich background knowledge about how the physical world works, which in turn allows us to reason about the physical world through language. In addition to the properties of objects (e.g., boats require fuel) and their affordances, i.e., the actions that are applicable to them (e.g., boats can be driven), we can also reason about if-then inferences between what properties of objects imply the kind of actions that are applicable to them (e.g., that if we can drive something then it likely requires fuel). In this paper, we investigate the extent to which state-of-the-art neural language representations, trained on a vast amount of natural language text, demonstrate physical commonsense reasoning. While recent advancements of neural language models have demonstrated strong performance on various types of natural language inference tasks, our study based on a dataset of over 200k newly collected annotations suggests that neural language representations still only learn associations that are explicitly written down.

Proceedings ArticleDOI
01 Nov 2019
TL;DR: A simple multi-task learning scheme to achieve quantitatively better common sense reasoning in language models by leveraging auxiliary training signals from datasets designed to provide common sense grounding.
Abstract: Stories generated with neural language models have shown promise in grammatical and stylistic consistency. However, the generated stories are still lacking in common sense reasoning, e.g., they often contain sentences deprived of world knowledge. We propose a simple multi-task learning scheme to achieve quantitatively better common sense reasoning in language models by leveraging auxiliary training signals from datasets designed to provide common sense grounding. When combined with our two-stage fine-tuning pipeline, our method achieves improved common sense reasoning and state-of-the-art perplexity on the WritingPrompts (Fan et al., 2018) story generation dataset.

Journal Article
TL;DR: While recent advancements of neural language models have demonstrated strong performance on various types of natural language inference tasks, this study based on a dataset of over 200k newly collected annotations suggests that neural language representations still only learn associations that are explicitly written down.

Posted Content
TL;DR: This article used CoS-E to train language models to automatically generate explanations that can be used during training and inference in a novel commonsense Auto-Generated Explanation (CAGE) framework.
Abstract: Deep learning models perform poorly on tasks that require commonsense reasoning, which often necessitates some form of world-knowledge or reasoning over information not immediately present in the input. We collect human explanations for commonsense reasoning in the form of natural language sequences and highlighted annotations in a new dataset called Common Sense Explanations (CoS-E). We use CoS-E to train language models to automatically generate explanations that can be used during training and inference in a novel Commonsense Auto-Generated Explanation (CAGE) framework. CAGE improves the state-of-the-art by 10% on the challenging CommonsenseQA task. We further study commonsense reasoning in DNNs using both human and auto-generated explanations including transfer to out-of-domain tasks. Empirical results indicate that we can effectively leverage language models for commonsense reasoning.

Proceedings ArticleDOI
Michael Chen1, Mike D'Arcy1, Alisa Liu1, Jared Fernandez1, Doug Downey 
08 Apr 2019
TL;DR: CODAH as mentioned in this paper is an adversarially-constructed evaluation dataset for testing commonsense knowledge, where workers are rewarded for submitting questions that models fail to answer both before and after fine-tuning.
Abstract: Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 65.3% by the OpenAI GPT model.

Proceedings ArticleDOI
01 Sep 2019
TL;DR: This paper makes case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs.
Abstract: Recent studies have significantly improved the state-of-the-art on common-sense reasoning (CSR) benchmarks like the Winograd Schema Challenge (WSC) and SWAG. The question we ask in this paper is whether improved performance on these benchmarks represents genuine progress towards common-sense-enabled systems. We make case studies of both benchmarks and design protocols that clarify and qualify the results of previous work by analyzing threats to the validity of previous experimental designs. Our protocols account for several properties prevalent in common-sense benchmarks including size limitations, structural regularities, and variable instance difficulty.

Proceedings ArticleDOI
01 Jul 2019
TL;DR: This article proposed an attention-guided commonsense reasoning method based on the BERT model, which can be used for tasks such as Pronoun Disambiguation Problem and Winograd Schema Challenge.
Abstract: The recently introduced BERT model exhibits strong performance on several language understanding benchmarks. In this paper, we describe a simple re-implementation of BERT for commonsense reasoning. We show that the attentions produced by BERT can be directly utilized for tasks such as the Pronoun Disambiguation Problem and Winograd Schema Challenge. Our proposed attention-guided commonsense reasoning method is conceptually simple yet empirically powerful. Experimental analysis on multiple datasets demonstrates that our proposed system performs remarkably well on all cases while outperforming the previously reported state of the art by a margin. While results suggest that BERT seems to implicitly learn to establish complex relationships between entities, solving commonsense reasoning tasks might require more than unsupervised models learned from huge text corpora.