scispace - formally typeset
Search or ask a question

Showing papers on "Mesoangioblast published in 2014"


Journal ArticleDOI
TL;DR: It is shown that early extra-embryonic endothelium generates hematopoietic cells that migrate to the embryo proper, and are subsequently found within the mesenchyme, and the putative in vivo counterpart of embryonic mesoangioblasts is identified, suggesting their identity and developmental ontogeny.
Abstract: The embryonic endothelium is a known source of hematopoietic stem cells. Moreover, vessel-associated progenitors/stem cells with multilineage mesodermal differentiation potential, such as the 'embryonic mesoangioblasts', originate in vitro from the endothelium. Using a genetic lineage tracing approach, we show that early extra-embryonic endothelium generates, in a narrow time-window and prior to the hemogenic endothelium in the major embryonic arteries, hematopoietic cells that migrate to the embryo proper, and are subsequently found within the mesenchyme. A subpopulation of these cells, distinct from embryonic macrophages, co-expresses mesenchymal and hematopoietic markers. In addition, hemogenic endothelium-derived cells contribute to skeletal and smooth muscle, and to other mesodermal cells in vivo, and display features of embryonic mesoangioblasts in vitro. Therefore, we provide new insights on the distinctive characteristics of the extra-embryonic and embryonic hemogenic endothelium, and we identify the putative in vivo counterpart of embryonic mesoangioblasts, suggesting their identity and developmental ontogeny.

32 citations


Journal ArticleDOI
TL;DR: The assays and tools currently utilized to evaluate the differentiation capacity of IDEMs are described, focusing on the transplantation methods and subsequent outcome measures to analyze the efficacy of cell transplantation.
Abstract: Patient-derived iPSCs could be an invaluable source of cells for future autologous cell therapy protocols. iPSC-derived myogenic stem/progenitor cells similar to pericyte-derived mesoangioblasts (iPSC-derived mesoangioblast-like stem/progenitor cells: IDEMs) can be established from iPSCs generated from patients affected by different forms of muscular dystrophy. Patient-specific IDEMs can be genetically corrected with different strategies (e.g. lentiviral vectors, human artificial chromosomes) and enhanced in their myogenic differentiation potential upon overexpression of the myogenesis regulator MyoD. This myogenic potential is then assessed in vitro with specific differentiation assays and analyzed by immunofluorescence. The regenerative potential of IDEMs is further evaluated in vivo, upon intramuscular and intra-arterial transplantation in two representative mouse models displaying acute and chronic muscle regeneration. The contribution of IDEMs to the host skeletal muscle is then confirmed by different functional tests in transplanted mice. In particular, the amelioration of the motor capacity of the animals is studied with treadmill tests. Cell engraftment and differentiation are then assessed by a number of histological and immunofluorescence assays on transplanted muscles. Overall, this paper describes the assays and tools currently utilized to evaluate the differentiation capacity of IDEMs, focusing on the transplantation methods and subsequent outcome measures to analyze the efficacy of cell transplantation.

29 citations


Journal ArticleDOI
TL;DR: Findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.

18 citations