scispace - formally typeset
Search or ask a question

Showing papers on "SOX2 published in 2003"


Journal ArticleDOI
TL;DR: It is found that tumor-derived progenitors form neurospheres that can be passaged at clonal density and are able to self-renew, which may have important implications for treatment by means of specific targeting of stem-like cells within brain tumors.
Abstract: Pediatric brain tumors are significant causes of morbidity and mortality. It has been hypothesized that they derive from self-renewing multipotent neural stem cells. Here, we tested whether different pediatric brain tumors, including medulloblastomas and gliomas, contain cells with properties similar to neural stem cells. We find that tumor-derived progenitors form neurospheres that can be passaged at clonal density and are able to self-renew. Under conditions promoting differentiation, individual cells are multipotent, giving rise to both neurons and glia, in proportions that reflect the tumor of origin. Unlike normal neural stem cells, however, tumor-derived progenitors have an unusual capacity to proliferate and sometimes differentiate into abnormal cells with multiple differentiation markers. Gene expression analysis reveals that both whole tumors and tumor-derived neurospheres express many genes characteristic of neural and other stem cells, including CD133, Sox2, musashi-1, bmi-1, maternal embryonic leucine zipper kinase, and phosphoserine phosphatase, with variation from tumor to tumor. After grafting to neonatal rat brains, tumor-derived neurosphere cells migrate, produce neurons and glia, and continue to proliferate for more than 4 weeks. The results show that pediatric brain tumors contain neural stem-like cells with altered characteristics that may contribute to tumorigenesis. This finding may have important implications for treatment by means of specific targeting of stem-like cells within brain tumors.

1,810 citations


Journal ArticleDOI
28 Aug 2003-Neuron
TL;DR: It is shown here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics, and that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitors.

1,280 citations


Journal ArticleDOI
TL;DR: It is reported that expression of the transcription factors Sox1, Sox2 and Sox3 (Sox1–3) is a critical determinant of neurogenesis and the generation of neurons from stem cells depends on the inhibition of Sox1-3 expression by proneural proteins.
Abstract: The generation of neurons from stem cells involves the activity of proneural basic helix-loop-helix (bHLH) proteins, but the mechanism by which these proteins irreversibly commit stem cells to neuronal differentiation is not known. Here we report that expression of the transcription factors Sox1, Sox2 and Sox3 (Sox1-3) is a critical determinant of neurogenesis. Using chick in ovo electroporation, we found that Sox1-3 transcription factors keep neural cells undifferentiated by counteracting the activity of proneural proteins. Conversely, the capacity of proneural bHLH proteins to direct neuronal differentiation critically depends on their ability to suppress Sox1-3 expression in CNS progenitors. These data suggest that the generation of neurons from stem cells depends on the inhibition of Sox1-3 expression by proneural proteins.

801 citations


Journal ArticleDOI
TL;DR: It is found that F-box-containing protein Fbx15 was expressed predominantly in mouse undifferentiated ES cells, and homozygous mutant mice showed no gross developmental defects and were fertile.
Abstract: Embryonic stem (ES) cells are derived from mammalian blastocysts and maintain pluripotency, an ability to differentiate into all types of somatic and germ cells (32). Another important property of ES cells is their robust and infinite growth equivalent to tumor cells despite their normal karyotype. ES cells were developed from mouse blastocysts in 1981 (8, 15) and have been extensively used to generate knockout mice. Human ES cells were established in 1998 (33) and are considered promising sources for cell transplantation therapy. POU transcription factor Oct3/4 is expressed specifically in pluripotent cells, including ES cells, early embryos, and germ cells (27, 31). Targeted disruption of the Oct3/4 gene in the mouse results in early embryonic lethality (21). The inner cellular mass of Oct3/4-null blastocysts differentiates exclusively into trophoblasts. Furthermore, conditional deletion of Oct3/4 in ES cells leads to spontaneous differentiation into trophectoderm (25), demonstrating that Oct3/4 is essential for self-renewal of ES cells and mouse early development. Only a few Oct3/4 target genes have been identified. These include FGF-4 (4) and Rex-1 (2), in which Oct3/4 binds to an octamer motif, ATT(T/A)GCAT, located in regulatory elements. In FGF-4, SRY-related transcription factor Sox2 binds to a motif adjacent to the octamer sequence and synergistically activates transcription (5). In Rex-1, hypothetical factor ROX1 functions in a similar manner (2). It is not clear whether synergetic interaction with other transcription factors is common among target genes. Even consensus nucleotide sequences of Oct3/4-binding sites have not been fully determined. For example, the Oct3/4-binding site in UTF1 is one nucleotide different from the octamer sequence (22). Furthermore, it remains largely unknown how Oct3/4 maintains self-renewal of ES cells. Identification of novel Oct3/4 target genes is crucial to answering these questions. In this study, we utilized expression analyses, reporter gene analyses, and a gel mobility shift assay to demonstrate that Fbx15, which encodes an F-box-containing protein (35), is a novel target of Oct3/4. We also performed gene-targeting experiments to study physiological functions of Fbx15 in self-renewal of ES cells, mouse development, and fertility.

292 citations


Journal ArticleDOI
TL;DR: Five human neural progenitor cell cultures derived from cortical tissue harvested from premature infants are described to be highly dynamic, with high motility and extensive, evanescent intercellular contacts, and electrophysiological analysis after differentiation demonstrated that the majority of cells with neurons expressed voltage‐gated sodium and potassium currents.
Abstract: Post-mortem human brain tissue represents a vast potential source of neural progenitor cells for use in basic research as well as therapeutic applications. Here we describe five human neural progenitor cell cultures derived from cortical tissue harvested from premature infants. Time-lapse videomicrography of the passaged cultures revealed them to be highly dynamic, with high motility and extensive, evanescent intercellular contacts. Karyotyping revealed normal chromosomal complements. Prior to differentiation, most of the cells were nestin, Sox2, vimentin, and/or GFAP positive, and a subpopulation was doublecortin positive. Multilineage potential of these cells was demonstrated after differentiation, with some subpopulations of cells expressing the neuronal markers beta-tubulin, MAP2ab, NeuN, FMRP, and Tau and others expressing the oligodendroglial marker O1. Still other cells expressed the classic glial marker glial fibrillary acidic protein (GFAP). RT-PCR confirmed nestin, SOX2, GFAP, and doublecortin expression and also showed epidermal growth factor receptor and nucleostemin expression during the expansion phase. Flow cytometry showed high levels of the neural stem cell markers CD133, CD44, CD81, CD184, CD90, and CD29. CD133 markedly decreased in high-passage, lineage-restricted cultures. Electrophysiological analysis after differentiation demonstrated that the majority of cells with neuronal morphology expressed voltage-gated sodium and potassium currents. These data suggest that post-mortem human brain tissue is an important source of neural progenitor cells that will be useful for analysis of neural differentiation and for transplantation studies.

253 citations


Journal ArticleDOI
TL;DR: A direct genetic and functional comparison of molecularly defined and clonally related populations of neural SCs and embryonic SCs using the Sox2 promoter for isolation of purified populations by fluorescence-activated cell sorting elucidates the molecular basis for the functional differences in pluripotent ESCs and multipotent NSCs.
Abstract: Stem cells (SCs) are functionally defined by their abilities to self-renew and generate differentiated cells. Although much effort has been focused on defining the common characteristics among various types of SCs, the genetic and functional differences between multipotent and pluripotent SCs have garnered less attention. We report a direct genetic and functional comparison of molecularly defined and clonally related populations of neural SCs (NSCs) and embryonic SCs (ESCs), using the Sox2 promoter for isolation of purified populations by fluorescence-activated cell sorting. A stringent expression profile comparison of promoter-defined NSCs and ESCs revealed a striking dissimilarity, and subsequent chimera analyses confirmed the fundamental differences in cellular potency between these populations. This direct comparison elucidates the molecular basis for the functional differences in pluripotent ESCs and multipotent NSCs.

217 citations


Journal ArticleDOI
TL;DR: Oct3/4 appears to promote neuroectoderm formation and subsequent neuronal differentiation from ES cells and enhanced SDIA-mediated neurogenesis of ES cells.
Abstract: Oct3/4 plays a critical role in maintaining embryonic stem cell pluripotency. Regulatable transgene-mediated sustained Oct3/4 expression in ES cells cultured in serum-free LIF-deficient medium caused accelerated differentiation to neuroectoderm-like cells that expressed Sox2, Otx1 and Emx2 and subsequently differentiated into neurons. Neurogenesis of ES cells is promoted by SDIA (stromal cell-derived inducing activity), which accumulates on the PA6 stromal cell surface. Oct3/4 expression in ES cells was maintained by SDIA whereas without it expression was promptly downregulated. Suppression of Oct3/4 abolished neuronal differentiation even after stimulation by SDIA. In contrast, sustained upregulated Oct3/4 expression enhanced SDIA-mediated neurogenesis of ES cells. Therefore, Oct3/4 appears to promote neuroectoderm formation and subsequent neuronal differentiation from ES cells.

142 citations


Journal ArticleDOI
TL;DR: The data suggest that the effects of retinoic acid on neural differentiation of NTERA2 EC cells might be mediated by modulation of SOX2 and SOX3 gene expression.
Abstract: The SOX genes comprise a family of transcriptional regulators implicated in the control of nervous system development. The developing brain is the major site of expression of many Soxgenes. Sox2 and Sox3 genes are predominantly expressed in the immature, undifferentiated cells of the neural epithelium throughout the entire CNS. NTERA2 is a human embryonal carcinoma cell line that phenotypically represents undifferentiated, pluripotent embryonic stem cells. In the presence of retinoic acid, cells differentiate into mature neurons providing an in vitro model for studying human genes that promote and regulate neural differentiation.

50 citations


Journal ArticleDOI
TL;DR: It is proposed that Nbx is an essential transcriptional repressor required to permit neural crest induction by inhibiting the neural fate.

16 citations