scispace - formally typeset
Search or ask a question

Showing papers by "André M. Braun published in 2003"


Book ChapterDOI
TL;DR: A glossary that was prepared by the Photochemistry Commission of the Organic Chemistry Division of the International Union of Pure and Applied Chemistry during the period 1978-1985 is presented in this paper, which provides definitions of terms and symbols commonly used in the field in order to achieve consensus on the adoption of some definitions and on the abandonment of inadequate terms.
Abstract: This chapter presents a Glossary that was prepared by the Photochemistry Commission of the Organic Chemistry Division of the International Union of Pure and Applied Chemistry during the period 1978–1985 The purpose of the glossary is to provide definitions of terms and symbols commonly used in the field in order to achieve consensus on the adoption of some definitions and on the abandonment of inadequate terms

275 citations


Journal ArticleDOI
TL;DR: In this article, 6-carboxypterin, 6-formylpterin, folic acid, biopterin and neopterin have been investigated for their efficiencies of singlet oxygen (O2(1Δg)) production and quenching in aqueous solutions.
Abstract: Six compounds of the pterin family (pterin, 6-carboxypterin, 6-formylpterin, folic acid, biopterin and neopterin) have been investigated for their efficiencies of singlet oxygen (O2(1Δg)) production and quenching in aqueous solutions. The quantum yields of 1O2 production (ΦΔ) have been determined by measurements of the 1O2 luminescence in the near-infrared (1270 nm) upon continuous excitation of the sensitizer. Under our experimental conditions, all studied compounds (except folic acid) are relatively efficient 1O2 sensitizers with ΦΔ values of up to 0.47. Results show that the nature of the substituent at position 6 on the pterin moiety, as well as the pH, affect considerably the capacity of pterins to produce 1O2. All compounds investigated are efficient 1O2 quenchers: the rate constant of 1O2 total quenching (kt) by folic acid (3.0(± 0.3) × 107 M−1 s−1) is one order of magnitude larger than those for the other pterin derivatives investigated (1.4(± 0.1) × 106 M−1 s−1to 2.9(± 0.3) × 106 M−1 s−1).

86 citations



Journal ArticleDOI
TL;DR: In this paper, a considerably arduous test of a novel class of composite materials consisting of [Ru(bpy)3]2+ and TiO2 codoped zeolites Y is presented.
Abstract: A considerably arduous test of a novel class of composite materials consisting of [Ru(bpy)3]2+ and TiO2 codoped zeolites Y is presented here. The [Ru(bpy)3]2+ and TiO2 codoped zeolites Y served as photocatalysts in the oxidation of the model compounds 2,4-dimethylaniline (2,4-xylidine) by H2O2 in an acidic aqueous medium. Zeolite-embedded TiO2 (nano)particles play an important role in the degradation mechanism. The first step in this complex mechanism is the photoelectron transfer from photoexcited [Ru(bpy)3]2+*, located inside the supercage of zeolite Y, to a neighboring TiO2 nanoparticle. During this electron transfer process, electron injection into the conduction band of TiO2 is achieved. The second decisive step is the reaction of this electron with H2O2, which was previously chemisorbed at the surface-region of the TiO2 nanoparticles. In this reaction, a TiO2 bound hydroxyl radical (TiO2–HO˙) is created. This highly reactive intermediate initiates then the oxidation of 2,4-xylidine, which enters the zeolites framework in its protonated form (Hxyl+). The formation of 2,4-dimethylphenol as first detectable reaction product indicated that this oxidation proceeds via an electron transfer mechanism. Furthermore, [Ru(bpy)3]3+, which was created in the initiating photoelectron transfer reaction between [Ru(bpy)3]2+* and TiO2, also takes place in the oxidation of Hxyl+. [Ru(bpy)3]2+ is recycled in that reaction, which also belongs to the group of electron transfer reactions. In addition to the primary steps of this particular Advanced Oxidation Process (AOP), the dependence of the efficiency of the 2,4-xylidine degradation as a function of the [Ru(bpy)3]2+ and TiO2 loadings of the zeolite Y framework is also reported here. The quenching of [Ru(bpy)3]2+* by H2O2 as well as the photocatalytic activity of the [Ru(bpy)3]2+ and TiO2 codoped zeolite Y catalysts both follow a distinct percolation behavior in dependence of their TiO2 content.

22 citations


Journal ArticleDOI
TL;DR: In this article, the effect of a series of 18 solvents and mixtures of them on the production of singlet molecular oxygen (O2(1Δg) by 9H-fluoren-9-one (FLU) was investigated.
Abstract: We have investigated the effect of a series of 18 solvents and mixtures of solvents on the production of singlet molecular oxygen (O2(1Δg), denoted as 1O2) by 9H-fluoren-9-one (FLU). The normalized empirical parameter E derived from ET(30) has been chosen as a measure of solvent polarity using Reichardt's betaine dyes. Quantum yields of 1O2 production (ΦΔ) decrease with increasing solvent polarity and protic character as a consequence of the decrease of the quantum yield of intersystem crossing (ΦISC). Values of ΦΔ of unity have been found in alkanes. In nonprotic solvents of increasing polarity, ΦISC and, therefore, ΦΔ decrease due to solvent-induced changes in the energy levels of singlet and triplet excited states of FLU. This compound is a poor 1O2 sensitizer in protic solvents, because hydrogen bonding considerably increases the rate of internal conversion from the singlet excited state, thus diminishing ΦΔ to values much lower than those in nonprotic solvents of similar polarity. In mixtures of cyclohexane and alcohols, preferential solvation of FLU by the protic solvent leads to a fast decrease of ΦΔ upon addition of increasing amounts of the latter.

21 citations