scispace - formally typeset
Search or ask a question

Showing papers by "Arnold J. Levine published in 2013"


Journal ArticleDOI
TL;DR: It is shown that tumor-associatedmutp53 stimulates the Warburg effect in cultured cells and mutp53 knock-in mice as a new mutp 53 gain-of-function (GOF) and a mechanism for controlling the Warberg effect is revealed.
Abstract: Tumour cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Its mechanism is not well understood. The tumour suppressor gene p53 is frequently mutated in tumours. Many tumour-associated mutant p53 (mutp53) proteins not only lose tumour suppressive function but also gain new oncogenic functions that are independent of wild-type p53, defined as mutp53 gain of function (GOF). Here we show that tumour-associated mutp53 stimulates the Warburg effect in cultured cells and mutp53 knockin mice as a new mutp53 GOF. Mutp53 stimulates the Warburg effect through promoting GLUT1 translocation to the plasma membrane, which is mediated by activated RhoA and its downstream effector ROCK. Inhibition of RhoA/ROCK/GLUT1 signalling largely abolishes mutp53 GOF in stimulating the Warburg effect. Furthermore, inhibition of glycolysis in tumour cells greatly compromises mutp53 GOF in promoting tumorigenesis. Thus, our results reveal a new mutp53 GOF and a mechanism for controlling the Warburg effect.

339 citations


Journal ArticleDOI
07 Feb 2013-Oncogene
TL;DR: It is demonstrated that miR-143 inhibits HK2 expression both in primary keratinocytes and in head and neck squamous cell carcinoma (HNSCC)-derived cell lines and in primary tumors, unveiling a new miRNA-dependent mechanism of regulation of hexokinase expression potentially important in the regulation of glucose metabolism of cancer cells.
Abstract: Tumor cells activate pathways that facilitate and stimulate glycolysis even in the presence of adequate levels of oxygen in order to satisfy their continuous need of molecules, such as nucleotides, ATP and fatty acids, necessary to support their rapid proliferation. Accordingly, a variety of human tumors are characterized by elevated expression levels of the hexokinase 2 isoform (HK2). Although different molecular mechanisms, including genetic and epigenetic mechanisms, have been suggested to account for the altered expression of HK2 in tumors, the potential role of microRNAs (miRNAs) in the regulation of HK2 expression has not been evaluated. Here, we report that miR-143 inhibits HK2 expression via a conserved miR-143 recognition motif located in the 3'-untranslated region (3'UTR) of HK2 mRNA. We demonstrate that miR143 inhibits HK2 expression both in primary keratinocytes and in head and neck squamous cell carcinoma (HNSCC)-derived cell lines. Importantly, we found that miR-143 inversely correlates with HK2 expression in HNSCC-derived cell lines and in primary tumors. We also report that the miRNA-dependent regulation of hexokinase expression is not limited to HK2 as miR-138 targets HK1 via a specific recognition motif located in its 3'UTR. All these data unveil a new miRNA-dependent mechanism of regulation of hexokinase expression potentially important in the regulation of glucose metabolism of cancer cells.

169 citations


Journal ArticleDOI
03 Jan 2013-Oncogene
TL;DR: The results of this study point to miR-132 as a methylation-silenced miRNA with an antimetastatic role in PCa controlling cellular adhesion.
Abstract: Silencing of microRNAs (miRNAs) by promoter CpG island methylation may be an important mechanism in prostate carcinogenesis. To screen for epigenetically silenced miRNAs in prostate cancer (PCa), we treated prostate normal epithelial and carcinoma cells with 5-aza-2'-deoxycytidine (AZA) and subsequently examined expression changes of 650 miRNAs by megaplex stemloop reverse transcription-quantitative PCR. After applying a selection strategy, we analyzed the methylation status of CpG islands upstream to a subset of miRNAs by methylation-specific PCR. The CpG islands of miR-18b, miR-132, miR-34b/c, miR-148a, miR-450a and miR-542-3p showed methylation patterns congruent with their expression modulations in response to AZA. Methylation analysis of these CpG islands in a panel of 50 human prostate carcinoma specimens and 24 normal controls revealed miR-132 to be methylated in 42% of human cancer cases in a manner positively correlated to total Gleason score and tumor stage. Expression analysis of miR-132 in our tissue panel confirmed its downregulation in methylated tumors. Re-expression of miR-132 in PC3 cells induced cell detachment followed by cell death (anoikis). Two pro-survival proteins-heparin-binding epidermal growth factor and TALIN2-were confirmed as direct targets of miR-132. The results of this study point to miR-132 as a methylation-silenced miRNA with an antimetastatic role in PCa controlling cellular adhesion.

139 citations


Journal ArticleDOI
TL;DR: This work reports that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines, and finds that GLS2 is upregulated in colon adenocarcinoma.
Abstract: The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes.

68 citations


01 Jan 2013
Abstract: Silencing of microRNAs (miRNAs) by promoter CpG island methylation may be an important mechanism in prostate carcinogenesis. To screen for epigenetically silenced miRNAs in prostate cancer (PCa), we treated prostate normal epithelial and carcinoma cells with 5-aza-2′-deoxycytidine (AZA) and subsequently examined expression changes of 650 miRNAs by megaplex stemloop reverse transcription–quantitative PCR. After applying a selection strategy, we analyzed the methylation status of CpG islands upstream to a subset of miRNAs by methylation-specific PCR. The CpG islands of miR-18b, miR-132, miR-34b/c, miR-148a, miR-450a and miR-542-3p showed methylation patterns congruent with their expression modulations in response to AZA. Methylation analysis of these CpG islands in a panel of 50 human prostate carcinoma specimens and 24 normal controls revealed miR-132 to be methylated in 42% of human cancer cases in a manner positively correlated to total Gleason score and tumor stage. Expression analysis of miR-132 in our tissue panel confirmed its downregulation in methylated tumors. Re-expression of miR-132 in PC3 cells induced cell detachment followed by cell death (anoikis). Two pro-survival proteins—heparin-binding epidermal growth factor and TALIN2—were confirmed as direct targets of miR-132. The results of this study point to miR-132 as a methylation-silenced miRNA with an antimetastatic role in PCa controlling cellular adhesion.

3 citations