scispace - formally typeset
Search or ask a question

Showing papers by "Christian Theobalt published in 2016"


Proceedings ArticleDOI
27 Jun 2016
TL;DR: A novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video) that addresses the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling and re-render the manipulated output video in a photo-realistic fashion.
Abstract: We present a novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video). The source sequence is also a monocular video stream, captured live with a commodity webcam. Our goal is to animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a photo-realistic fashion. To this end, we first address the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling. At run time, we track facial expressions of both source and target video using a dense photometric consistency measure. Reenactment is then achieved by fast and efficient deformation transfer between source and target. The mouth interior that best matches the re-targeted expression is retrieved from the target sequence and warped to produce an accurate fit. Finally, we convincingly re-render the synthesized target face on top of the corresponding video stream such that it seamlessly blends with the real-world illumination. We demonstrate our method in a live setup, where Youtube videos are reenacted in real time.

1,011 citations


Proceedings ArticleDOI
24 Jul 2016
TL;DR: A novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video) that addresses the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling and re-render the manipulated output video in a photo-realistic fashion.
Abstract: We present a novel approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video). The source sequence is also a monocular video stream, captured live with a commodity webcam. Our goal is to animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a photo-realistic fashion. To this end, we first address the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling. At run time, we track facial expressions of both source and target video using a dense photometric consistency measure. Reenactment is then achieved by fast and efficient deformation transfer between source and target. The mouth interior that best matches the re-targeted expression is retrieved from the target sequence and warped to produce an accurate fit. Finally, we convincingly re-render the synthesized target face on top of the corresponding video stream such that it seamlessly blends with the real-world illumination. We demonstrate our method in a live setup, where Youtube videos are reen-acted in real time.

621 citations


Posted Content
TL;DR: A CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data is proposed.
Abstract: We propose a CNN-based approach for 3D human body pose estimation from single RGB images that addresses the issue of limited generalizability of models trained solely on the starkly limited publicly available 3D pose data. Using only the existing 3D pose data and 2D pose data, we show state-of-the-art performance on established benchmarks through transfer of learned features, while also generalizing to in-the-wild scenes. We further introduce a new training set for human body pose estimation from monocular images of real humans that has the ground truth captured with a multi-camera marker-less motion capture system. It complements existing corpora with greater diversity in pose, human appearance, clothing, occlusion, and viewpoints, and enables an increased scope of augmentation. We also contribute a new benchmark that covers outdoor and indoor scenes, and demonstrate that our 3D pose dataset shows better in-the-wild performance than existing annotated data, which is further improved in conjunction with transfer learning from 2D pose data. All in all, we argue that the use of transfer learning of representations in tandem with algorithmic and data contributions is crucial for general 3D body pose estimation.

521 citations


Book ChapterDOI
08 Oct 2016
TL;DR: In this paper, a single hand-held consumer-grade RGB-D sensor at real-time rates is used to reconstruct dynamic geometric shapes using a set of sparse color features in combination with a dense depth constraint.
Abstract: We present a novel approach for the reconstruction of dynamic geometric shapes using a single hand-held consumer-grade RGB-D sensor at real-time rates. Our method builds up the scene model from scratch during the scanning process, thus it does not require a pre-defined shape template to start with. Geometry and motion are parameterized in a unified manner by a volumetric representation that encodes a distance field of the surface geometry as well as the non-rigid space deformation. Motion tracking is based on a set of extracted sparse color features in combination with a dense depth constraint. This enables accurate tracking and drastically reduces drift inherent to standard model-to-depth alignment. We cast finding the optimal deformation of space as a non-linear regularized variational optimization problem by enforcing local smoothness and proximity to the input constraints. The problem is tackled in real-time at the camera’s capture rate using a data-parallel flip-flop optimization strategy. Our results demonstrate robust tracking even for fast motion and scenes that lack geometric features.

325 citations


Journal ArticleDOI
TL;DR: A novel approach for the automatic creation of a personalized high-quality 3D face rig of an actor from just monocular video data, based on three distinct layers that allow the actor's facial shape as well as capture his person-specific expression characteristics at high fidelity, ranging from coarse-scale geometry to fine-scale static and transient detail on the scale of folds and wrinkles.
Abstract: We present a novel approach for the automatic creation of a personalized high-quality 3D face rig of an actor from just monocular video data (e.g., vintage movies). Our rig is based on three distinct layers that allow us to model the actor’s facial shape as well as capture his person-specific expression characteristics at high fidelity, ranging from coarse-scale geometry to fine-scale static and transient detail on the scale of folds and wrinkles. At the heart of our approach is a parametric shape prior that encodes the plausible subspace of facial identity and expression variations. Based on this prior, a coarse-scale reconstruction is obtained by means of a novel variational fitting approach. We represent person-specific idiosyncrasies, which cannot be represented in the restricted shape and expression space, by learning a set of medium-scale corrective shapes. Fine-scale skin detail, such as wrinkles, are captured from video via shading-based refinement, and a generative detail formation model is learned. Both the medium- and fine-scale detail layers are coupled with the parametric prior by means of a novel sparse linear regression formulation. Once reconstructed, all layers of the face rig can be conveniently controlled by a low number of blendshape expression parameters, as widely used by animation artists. We show captured face rigs and their motions for several actors filmed in different monocular video formats, including legacy footage from YouTube, and demonstrate how they can be used for 3D animation and 2D video editing. Finally, we evaluate our approach qualitatively and quantitatively and compare to related state-of-the-art methods.

267 citations


Posted Content
TL;DR: In this paper, a 3D articulated Gaussian mixture alignment strategy is proposed for real-time simultaneous tracking of hands manipulating and interacting with external objects using a single commodity RGB-D camera.
Abstract: Real-time simultaneous tracking of hands manipulating and interacting with external objects has many potential applications in augmented reality, tangible computing, and wearable computing. However, due to difficult occlusions, fast motions, and uniform hand appearance, jointly tracking hand and object pose is more challenging than tracking either of the two separately. Many previous approaches resort to complex multi-camera setups to remedy the occlusion problem and often employ expensive segmentation and optimization steps which makes real-time tracking impossible. In this paper, we propose a real-time solution that uses a single commodity RGB-D camera. The core of our approach is a 3D articulated Gaussian mixture alignment strategy tailored to hand-object tracking that allows fast pose optimization. The alignment energy uses novel regularizers to address occlusions and hand-object contacts. For added robustness, we guide the optimization with discriminative part classification of the hand and segmentation of the object. We conducted extensive experiments on several existing datasets and introduce a new annotated hand-object dataset. Quantitative and qualitative results show the key advantages of our method: speed, accuracy, and robustness.

188 citations


Proceedings ArticleDOI
TL;DR: This paper presents a fast method for accurately tracking rapid and complex articulations of the hand using a single depth camera using a novel detectionguided optimization strategy that increases the robustness and speed of pose estimation.
Abstract: Markerless tracking of hands and fingers is a promising enabler for human-computer interaction. However, adoption has been limited because of tracking inaccuracies, incomplete coverage of motions, low framerate, complex camera setups, and high computational requirements. In this paper, we present a fast method for accurately tracking rapid and complex articulations of the hand using a single depth camera. Our algorithm uses a novel detection-guided optimization strategy that increases the robustness and speed of pose estimation. In the detection step, a randomized decision forest classifies pixels into parts of the hand. In the optimization step, a novel objective function combines the detected part labels and a Gaussian mixture representation of the depth to estimate a pose that best fits the depth. Our approach needs comparably less computational resources which makes it extremely fast (50 fps without GPU support). The approach also supports varying static, or moving, camera-to-scene arrangements. We show the benefits of our method by evaluating on public datasets and comparing against previous work.

173 citations


Book ChapterDOI
08 Oct 2016
TL;DR: This paper proposes a real-time solution that uses a single commodity RGB-D camera and proposes a 3D articulated Gaussian mixture alignment strategy tailored to hand-object tracking that allows fast pose optimization.
Abstract: Real-time simultaneous tracking of hands manipulating and interacting with external objects has many potential applications in augmented reality, tangible computing, and wearable computing. However, due to difficult occlusions, fast motions, and uniform hand appearance, jointly tracking hand and object pose is more challenging than tracking either of the two separately. Many previous approaches resort to complex multi-camera setups to remedy the occlusion problem and often employ expensive segmentation and optimization steps which makes real-time tracking impossible. In this paper, we propose a real-time solution that uses a single commodity RGB-D camera. The core of our approach is a 3D articulated Gaussian mixture alignment strategy tailored to hand-object tracking that allows fast pose optimization. The alignment energy uses novel regularizers to address occlusions and hand-object contacts. For added robustness, we guide the optimization with discriminative part classification of the hand and segmentation of the object. We conducted extensive experiments on several existing datasets and introduce a new annotated hand-object dataset. Quantitative and qualitative results show the key advantages of our method: speed, accuracy, and robustness.

157 citations


Book ChapterDOI
08 Oct 2016
TL;DR: A fully automatic algorithm that jointly creates a rigged actor model commonly used for animation – skeleton, volumetric shape, appearance, and optionally a body surface and estimates the actor’s motion from multi-view video input only and optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.
Abstract: Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different problem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation – skeleton, volumetric shape, appearance, and optionally a body surface – and estimates the actor’s motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as a Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume ray casting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, and variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.

105 citations


Journal ArticleDOI
11 Nov 2016
TL;DR: In this article, the authors estimate the full-body skeleton pose from a lightweight stereo pair of fisheye cameras attached to a helmet or virtual reality headset, which can be used in indoor and outdoor scenes.
Abstract: Marker-based and marker-less optical skeletal motion-capture methods use an outside-in arrangement of cameras placed around a scene, with viewpoints converging on the center. They often create discomfort with marker suits, and their recording volume is severely restricted and often constrained to indoor scenes with controlled backgrounds. Alternative suit-based systems use several inertial measurement units or an exoskeleton to capture motion with an inside-in setup, i.e. without external sensors. This makes capture independent of a confined volume, but requires substantial, often constraining, and hard to set up body instrumentation. Therefore, we propose a new method for real-time, marker-less, and egocentric motion capture: estimating the full-body skeleton pose from a lightweight stereo pair of fisheye cameras attached to a helmet or virtual reality headset - an optical inside-in method, so to speak. This allows full-body motion capture in general indoor and outdoor scenes, including crowded scenes with many people nearby, which enables reconstruction in larger-scale activities. Our approach combines the strength of a new generative pose estimation framework for fisheye views with a ConvNet-based body-part detector trained on a large new dataset. It is particularly useful in virtual reality to freely roam and interact, while seeing the fully motion-captured virtual body.

103 citations


Journal ArticleDOI
11 Jul 2016
TL;DR: This work proposes a novel combination of sophisticated local spatial and global spatio-temporal priors resulting in temporally coherent decompositions at real-time frame rates without the need for explicit correspondence search, which enables on-line processing of live video footage.
Abstract: Intrinsic video decomposition refers to the fundamentally ambiguous task of separating a video stream into its constituent layers, in particular reflectance and shading layers. Such a decomposition is the basis for a variety of video manipulation applications, such as realistic recoloring or retexturing of objects. We present a novel variational approach to tackle this underconstrained inverse problem at real-time frame rates, which enables on-line processing of live video footage. The problem of finding the intrinsic decomposition is formulated as a mixed variational e2-ep-optimization problem based on an objective function that is specifically tailored for fast optimization. To this end, we propose a novel combination of sophisticated local spatial and global spatio-temporal priors resulting in temporally coherent decompositions at real-time frame rates without the need for explicit correspondence search. We tackle the resulting high-dimensional, non-convex optimization problem via a novel data-parallel iteratively reweighted least squares solver that runs on commodity graphics hardware. Real-time performance is obtained by combining a local-global solution strategy with hierarchical coarse-to-fine optimization. Compelling real-time augmented reality applications, such as recoloring, material editing and retexturing, are demonstrated in a live setup. Our qualitative and quantitative evaluation shows that we obtain high-quality real-time decompositions even for challenging sequences. Our method is able to outperform state-of-the-art approaches in terms of runtime and result quality -- even without user guidance such as scribbles.

Journal ArticleDOI
11 Nov 2016
TL;DR: This paper presents the first approach for non-invasive reconstruction of an entire person-specific tooth row from just a sparse set of photographs of the mouth region, using a new parametric tooth row prior learned from high quality dental scans.
Abstract: In recent years, sophisticated image-based reconstruction methods for the human face have been developed. These methods capture highly detailed static and dynamic geometry of the whole face, or specific models of face regions, such as hair, eyes or eye lids. Unfortunately, image-based methods to capture the mouth cavity in general, and the teeth in particular, have received very little attention. The accurate rendering of teeth, however, is crucial for the realistic display of facial expressions, and currently high quality face animations resort to tooth row models created by tedious manual work. In dentistry, special intra-oral scanners for teeth were developed, but they are invasive, expensive, cumbersome to use, and not readily available. In this paper, we therefore present the first approach for non-invasive reconstruction of an entire person-specific tooth row from just a sparse set of photographs of the mouth region. The basis of our approach is a new parametric tooth row prior learned from high quality dental scans. A new model-based reconstruction approach fits teeth to the photographs such that visible teeth are accurately matched and occluded teeth plausibly synthesized. Our approach seamlessly integrates into photogrammetric multi-camera reconstruction setups for entire faces, but also enables high quality teeth modeling from normal uncalibrated photographs and even short videos captured with a mobile phone.

Proceedings ArticleDOI
TL;DR: In this paper, the authors proposed a new approach that tracks the full skeleton motion of the hand from multiple RGB cameras in real-time, which employs an implicit hand shape representation based on Sum of Anisotropic Gaussians (SAG) and a pose fitting energy that is smooth and analytically differentiable.
Abstract: Real-time marker-less hand tracking is of increasing importance in human-computer interaction. Robust and accurate tracking of arbitrary hand motion is a challenging problem due to the many degrees of freedom, frequent self-occlusions, fast motions, and uniform skin color. In this paper, we propose a new approach that tracks the full skeleton motion of the hand from multiple RGB cameras in real-time. The main contributions include a new generative tracking method which employs an implicit hand shape representation based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is smooth and analytically differentiable making fast gradient based pose optimization possible. This shape representation, together with a full perspective projection model, enables more accurate hand modeling than a related baseline method from literature. Our method achieves better accuracy than previous methods and runs at 25 fps. We show these improvements both qualitatively and quantitatively on publicly available datasets.

Posted Content
TL;DR: In this paper, a real-time, marker-less and egocentric motion capture method is proposed to estimate the full-body skeleton pose from a lightweight stereo pair of fisheye cameras that are attached to a helmet or virtual-reality headset.
Abstract: Marker-based and marker-less optical skeletal motion-capture methods use an outside-in arrangement of cameras placed around a scene, with viewpoints converging on the center. They often create discomfort by possibly needed marker suits, and their recording volume is severely restricted and often constrained to indoor scenes with controlled backgrounds. We therefore propose a new method for real-time, marker-less and egocentric motion capture which estimates the full-body skeleton pose from a lightweight stereo pair of fisheye cameras that are attached to a helmet or virtual-reality headset. It combines the strength of a new generative pose estimation framework for fisheye views with a ConvNet-based body-part detector trained on a new automatically annotated and augmented dataset. Our inside-in method captures full-body motion in general indoor and outdoor scenes, and also crowded scenes.

Posted Content
TL;DR: FaceVR as mentioned in this paper uses self-reenactment to perform real-time facial motion capture of an actor who is wearing a head-mounted display (HMD), as well as a new data-driven approach for eye tracking from monocular videos.
Abstract: We propose FaceVR, a novel image-based method that enables video teleconferencing in VR based on self-reenactment. State-of-the-art face tracking methods in the VR context are focused on the animation of rigged 3d avatars. While they achieve good tracking performance the results look cartoonish and not real. In contrast to these model-based approaches, FaceVR enables VR teleconferencing using an image-based technique that results in nearly photo-realistic outputs. The key component of FaceVR is a robust algorithm to perform real-time facial motion capture of an actor who is wearing a head-mounted display (HMD), as well as a new data-driven approach for eye tracking from monocular videos. Based on reenactment of a prerecorded stereo video of the person without the HMD, FaceVR incorporates photo-realistic re-rendering in real time, thus allowing artificial modifications of face and eye appearances. For instance, we can alter facial expressions or change gaze directions in the prerecorded target video. In a live setup, we apply these newly-introduced algorithmic components.

Posted Content
29 Nov 2016
TL;DR: A new CNN-based method for regressing 3D human body pose from a single image that improves over the state-of-the-art on standard benchmarks by more than 25%.
Abstract: We propose a new CNN-based method for regressing 3D human body pose from a single image that improves over the state-of-the-art on standard benchmarks by more than 25%. Our approach addresses the limited generalizability of models trained solely on the starkly limited publicly available 3D body pose data. Improved CNN supervision leverages first and second order parent relationships along the skeletal kinematic tree, and improved multi-level skip connections to learn better representations through implicit modification of the loss landscape. Further, transfer learning from 2D human pose prediction significantly improves accuracy and generalizability to unseen poses and camera views. Additionally, we contribute a new benchmark and training set for human body pose estimation from monocular images of real humans, that has ground truth captured with marker-less motion capture. It complements existing corpora with greater diversity in pose, human appearance, clothing, occlusion, and viewpoints, and enables increased scope of augmentation. The benchmark covers outdoors and indoor scenes.

Proceedings ArticleDOI
01 Oct 2016
TL;DR: A new model-based method to accurately reconstruct human performances captured outdoors in a multi-camera setup and introduces a new unified implicit representation for both, articulated skeleton tracking and non-rigid surface shape refinement.
Abstract: We propose a new model-based method to accurately reconstruct human performances captured outdoors in a multi-camera setup Starting from a template of the actor model, we introduce a new unified implicit representation for both, articulated skeleton tracking and non-rigid surface shape refinement Our method fits the template to unsegmented video frames in two stages – first, the coarse skeletal pose is estimated, and subsequently non-rigid surface shape and body pose are jointly refined Particularly for surface shape refinement we propose a new combination of 3D Gaussians designed to align the projected model with likely silhouette contours without explicit segmentation or edge detection We obtain reconstructions of much higher quality in outdoor settings than existing methods, and show that we are on par with state-of-the-art methods on indoor scenes for which they were designed

Journal ArticleDOI
11 Nov 2016
TL;DR: This work quantitatively and qualitatively shows that the monocular approach reconstructs higher quality lip shapes, even for complex shapes like a kiss or lip rolling, than previous monocular approaches, and generalizes to new individuals and general scenes, enabling high-fidelity reconstruction even from commodity video footage.
Abstract: In facial animation, the accurate shape and motion of the lips of virtual humans is of paramount importance, since subtle nuances in mouth expression strongly influence the interpretation of speech and the conveyed emotion. Unfortunately, passive photometric reconstruction of expressive lip motions, such as a kiss or rolling lips, is fundamentally hard even with multi-view methods in controlled studios. To alleviate this problem, we present a novel approach for fully automatic reconstruction of detailed and expressive lip shapes along with the dense geometry of the entire face, from just monocular RGB video. To this end, we learn the difference between inaccurate lip shapes found by a state-of-the-art monocular facial performance capture approach, and the true 3D lip shapes reconstructed using a high-quality multi-view system in combination with applied lip tattoos that are easy to track. A robust gradient domain regressor is trained to infer accurate lip shapes from coarse monocular reconstructions, with the additional help of automatically extracted inner and outer 2D lip contours. We quantitatively and qualitatively show that our monocular approach reconstructs higher quality lip shapes, even for complex shapes like a kiss or lip rolling, than previous monocular approaches. Furthermore, we compare the performance of person-specific and multi-person generic regression strategies and show that our approach generalizes to new individuals and general scenes, enabling high-fidelity reconstruction even from commodity video footage.

Posted Content
TL;DR: In this paper, a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation - skeleton, volumetric shape, appearance, and optionally a body surface - and estimates the actor's motion from multi-view video input only is proposed.
Abstract: Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different problem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation - skeleton, volumetric shape, appearance, and optionally a body surface - and estimates the actor's motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume raycasting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, as well as variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.

Posted Content
TL;DR: This work systematically addresses issues with a novel, real-time, end-to-end reconstruction framework, which outperforms state-of-the-art online systems with quality on par to offline methods, but with unprecedented speed and scan completeness.
Abstract: Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed reality and robotic applications. However, scalability brings challenges of drift in pose estimation, introducing significant errors in the accumulated model. Approaches often require hours of offline processing to globally correct model errors. Recent online methods demonstrate compelling results, but suffer from: (1) needing minutes to perform online correction preventing true real-time use; (2) brittle frame-to-frame (or frame-to-model) pose estimation resulting in many tracking failures; or (3) supporting only unstructured point-based representations, which limit scan quality and applicability. We systematically address these issues with a novel, real-time, end-to-end reconstruction framework. At its core is a robust pose estimation strategy, optimizing per frame for a global set of camera poses by considering the complete history of RGB-D input with an efficient hierarchical approach. We remove the heavy reliance on temporal tracking, and continually localize to the globally optimized frames instead. We contribute a parallelizable optimization framework, which employs correspondences based on sparse features and dense geometric and photometric matching. Our approach estimates globally optimized (i.e., bundle adjusted) poses in real-time, supports robust tracking with recovery from gross tracking failures (i.e., relocalization), and re-estimates the 3D model in real-time to ensure global consistency; all within a single framework. Our approach outperforms state-of-the-art online systems with quality on par to offline methods, but with unprecedented speed and scan completeness. Our framework leads to a comprehensive online scanning solution for large indoor environments, enabling ease of use and high-quality results.

Proceedings ArticleDOI
TL;DR: An image-based, facial reenactment system that replaces the face of an actor in an existing target video with the faceOf a user from a source video, while preserving the original target performance, which is fully automatic and does not require a database of source expressions.
Abstract: We propose an image-based, facial reenactment system that replaces the face of an actor in an existing target video with the face of a user from a source video, while preserving the original target performance. Our system is fully automatic and does not require a database of source expressions. Instead, it is able to produce convincing reenactment results from a short source video captured with an off-the-shelf camera, such as a webcam, where the user performs arbitrary facial gestures. Our reenactment pipeline is conceived as part image retrieval and part face transfer: The image retrieval is based on temporal clustering of target frames and a novel image matching metric that combines appearance and motion to select candidate frames from the source video, while the face transfer uses a 2D warping strategy that preserves the user's identity. Our system excels in simplicity as it does not rely on a 3D face model, it is robust under head motion and does not require the source and target performance to be similar. We show convincing reenactment results for videos that we recorded ourselves and for low-quality footage taken from the Internet.

Posted Content
TL;DR: This work presents a novel approach for the reconstruction of dynamic geometric shapes using a single hand-held consumer-grade RGB-D sensor at real-time rates, and casts finding the optimal deformation of space as a non-linear regularized variational optimization problem by enforcing local smoothness and proximity to the input constraints.
Abstract: We present a novel approach for the reconstruction of dynamic geometric shapes using a single hand-held consumer-grade RGB-D sensor at real-time rates. Our method does not require a pre-defined shape template to start with and builds up the scene model from scratch during the scanning process. Geometry and motion are parameterized in a unified manner by a volumetric representation that encodes a distance field of the surface geometry as well as the non-rigid space deformation. Motion tracking is based on a set of extracted sparse color features in combination with a dense depth-based constraint formulation. This enables accurate tracking and drastically reduces drift inherent to standard model-to-depth alignment. We cast finding the optimal deformation of space as a non-linear regularized variational optimization problem by enforcing local smoothness and proximity to the input constraints. The problem is tackled in real-time at the camera's capture rate using a data-parallel flip-flop optimization strategy. Our results demonstrate robust tracking even for fast motion and scenes that lack geometric features.

Posted Content
TL;DR: In this article, the authors compute dense, wide-baseline correspondences using DAISY descriptors for matching between cameras and over time, and then detect and replace occluded pixels in the correspondence fields using a novel edge-preserving Laplacian correspondence completion technique.
Abstract: We propose a new technique for computing dense scene flow from two handheld videos with wide camera baselines and different photometric properties due to different sensors or camera settings like exposure and white balance. Our technique innovates in two ways over existing methods: (1) it supports independently moving cameras, and (2) it computes dense scene flow for wide-baseline scenarios.We achieve this by combining state-of-the-art wide-baseline correspondence finding with a variational scene flow formulation. First, we compute dense, wide-baseline correspondences using DAISY descriptors for matching between cameras and over time. We then detect and replace occluded pixels in the correspondence fields using a novel edge-preserving Laplacian correspondence completion technique. We finally refine the computed correspondence fields in a variational scene flow formulation. We show dense scene flow results computed from challenging datasets with independently moving, handheld cameras of varying camera settings.

Proceedings ArticleDOI
25 Oct 2016
TL;DR: A new technique for computing dense scene flow from two handheld videos with wide camera baselines and different photometric properties due to different sensors or camera settings like exposure and white balance, which combines state-of-the-art wide-baseline correspondence finding with a variational scene flow formulation.
Abstract: We propose a new technique for computing dense scene flow from two handheld videos with wide camera baselines and different photometric properties due to different sensors or camera settings like exposure and white balance. Our technique innovates in two ways over existing methods: (1) it supports independently moving cameras, and (2) it computes dense scene flow for wide-baseline scenarios. We achieve this by combining state-of-the-art wide-baseline correspondence finding with a variational scene flow formulation. First, we compute dense, wide-baseline correspondences using DAISY descriptors for matching between cameras and over time. We then detect and replace occluded pixels in the correspondence fields using a novel edge-preserving Laplacian correspondence completion technique. We finally refine the computed correspondence fields in a variational scene flow formulation. We show dense scene flow results computed from challenging datasets with independently moving, handheld cameras of varying camera settings.

Posted Content
TL;DR: In this paper, a new model-based method is proposed to accurately reconstruct human performances captured outdoors in a multi-camera setup, starting from a template of the actor model, and a new unified implicit representation for both, articulated skeleton tracking and non-rigid surface shape refinement.
Abstract: We propose a new model-based method to accurately reconstruct human performances captured outdoors in a multi-camera setup. Starting from a template of the actor model, we introduce a new unified implicit representation for both, articulated skeleton tracking and nonrigid surface shape refinement. Our method fits the template to unsegmented video frames in two stages - first, the coarse skeletal pose is estimated, and subsequently non-rigid surface shape and body pose are jointly refined. Particularly for surface shape refinement we propose a new combination of 3D Gaussians designed to align the projected model with likely silhouette contours without explicit segmentation or edge detection. We obtain reconstructions of much higher quality in outdoor settings than existing methods, and show that we are on par with state-of-the-art methods on indoor scenes for which they were designed

Proceedings ArticleDOI
TL;DR: This work develops positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivities operators on graphs, which significantly improve semi-supervised learning performance over existing diffusion algorithms.
Abstract: Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms.

Proceedings ArticleDOI
01 Oct 2016
TL;DR: In this paper, a video-based depth-from-defocus algorithm was proposed to capture all-in-focus RGB-D video of dynamic scenes with an unmodified commodity video camera.
Abstract: Many compelling video post-processing effects, in particular aesthetic focus editing and refocusing effects, are feasible if per-frame depth information is available. Existing computational methods to capture RGB and depth either purposefully modify the optics (coded aperture, light-field imaging), or employ active RGB-D cameras. Since these methods are less practical for users with normal cameras, we present an algorithm to capture all-in-focus RGB-D video of dynamic scenes with an unmodified commodity video camera. Our algorithm turns the often unwanted defocus blur into a valuable signal. The input to our method is a video in which the focus plane is continuously moving back and forth during capture, and thus defocus blur is provoked and strongly visible. This can be achieved by manually turning the focus ring of the lens during recording. The core algorithmic ingredient is a new video-based depth-from-defocus algorithm that computes space-time-coherent depth maps, deblurred all-in-focus video, and the focus distance for each frame. We extensively evaluate our approach, and show that it enables compelling video post-processing effects, such as different types of refocusing.

Proceedings ArticleDOI
25 Oct 2016
TL;DR: This work presents a novel approach for real-time joint reconstruction of 3D scene motion and geometry from binocular stereo videos based on a novel variational halfway-domain scene flow formulation, which allows for highly accurate spatiotemporal reconstructions of shape and motion.
Abstract: We present a novel approach for real-time joint reconstruction of 3D scene motion and geometry from binocular stereo videos Our approach is based on a novel variational halfway-domain scene flow formulation, which allows us to obtain highly accurate spatiotemporal reconstructions of shape and motion We solve the underlying optimization problem at real-time frame rates using a novel data-parallel robust non-linear optimization strategy Fast convergence and large displacement flows are achieved by employing a novel hierarchy that stores delta flows between hierarchy levels High performance is obtained by the introduction of a coarser warp grid that decouples the number of unknowns from the input resolution of the images We demonstrate our approach in a live setup that is based on two commodity webcams, as well as on publicly available video data Our extensive experiments and evaluations show that our approach produces high-quality dense reconstructions of 3D geometry and scene flow at real-time frame rates, and compares favorably to the state of the art

Posted Content
TL;DR: Optimizing non-linear least squares optimization of objective functions over visual data, such as images and meshes, has been studied in this paper for real-time performance on modern GPUs in interactive applications.
Abstract: Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under this http URL), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver.

Posted Content
TL;DR: In this paper, a new scene representation is presented that enables an analytically differentiable closed-form formulation of surface visibility, which can be used to optimize pose similarity energies with rigorous occlusion handling.
Abstract: Generative reconstruction methods compute the 3D configuration (such as pose and/or geometry) of a shape by optimizing the overlap of the projected 3D shape model with images. Proper handling of occlusions is a big challenge, since the visibility function that indicates if a surface point is seen from a camera can often not be formulated in closed form, and is in general discrete and non-differentiable at occlusion boundaries. We present a new scene representation that enables an analytically differentiable closed-form formulation of surface visibility. In contrast to previous methods, this yields smooth, analytically differentiable, and efficient to optimize pose similarity energies with rigorous occlusion handling, fewer local minima, and experimentally verified improved convergence of numerical optimization. The underlying idea is a new image formation model that represents opaque objects by a translucent medium with a smooth Gaussian density distribution which turns visibility into a smooth phenomenon. We demonstrate the advantages of our versatile scene model in several generative pose estimation problems, namely marker-less multi-object pose estimation, marker-less human motion capture with few cameras, and image-based 3D geometry estimation.