scispace - formally typeset
Search or ask a question

Showing papers by "Claudia Jakubzick published in 2016"


Journal ArticleDOI
TL;DR: Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Abstract: Rationale: The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors.Objectives: Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs.Methods: We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was u...

134 citations


Journal ArticleDOI
TL;DR: This study investigates whether Ly6C+ monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3+ DCs, and outlines two functional roles, among others, that Ly8+ T cells have during an adaptive immune response.
Abstract: Recently it was shown that circulating Ly6C+ monocytes traffic from tissue to the draining lymph nodes (LNs) with minimal alteration in their overall phenotype. Furthermore, in the steady state, Ly6C+ monocytes are as abundant as classical dendritic cells (DCs) within the draining LNs, and even more abundant during inflammation. However, little is known about the functional roles of constitutively trafficking Ly6C+ monocytes. In this study we investigated whether Ly6C+ monocytes can efferocytose (acquire dying cells) and cross-present cell-associated antigen, a functional property particularly attributed to Batf3+ DCs. We demonstrated that Ly6C+ monocytes intrinsically efferocytose and cross-present cell-associated antigen to CD8+ T cells. In addition, efferocytosis was enhanced upon direct activation of the Ly6C+ monocytes through its corresponding TLRs, TLR4 and TLR7. However, only ligation of TLR7, and not TLR4, enhanced cross-presentation by Ly6C+ monocytes. Overall, this study outlines two functional roles, among others, that Ly6C+ monocytes have during an adaptive immune response.

67 citations


Journal ArticleDOI
TL;DR: This essay addresses the mechanisms and circumstances by which myeloid cells are removed, either in the normal unchallenged state or during inflammation or disease, focusing as examples on four main myeloids cell types and their clearance from the circulation or from naive and inflamed tissues.
Abstract: Given the dual and intrinsically contradictory roles of myeloid cells in both protective and yet also damaging effects of inflammatory and immunological processes, we suggest that it is important to consider the mechanisms and circumstances by which these cells are removed, either in the normal unchallenged state or during inflammation or disease. In this essay we address these subjects from a conceptual perspective, focusing as examples on four main myeloid cell types (neutrophils, monocytes, macrophages, and myeloid dendritic cells) and their clearance from the circulation or from naive and inflamed tissues. While the primary clearance process appears to involve endocytic uptake into macrophages, various tissue cell types can also recognize and remove dying cells, though their overall quantitative contribution is unclear. In fact, surprisingly, given the wealth of study in this area over the last 30 years, our conclusion is that we are still challenged with a substantial lack of mechanistic and regulatory understanding of when, how, and by what mechanisms migratory myeloid cells come to die and are recognized as needing to be removed, and indeed the precise processes of uptake of either the intact or fragmented cells. This reflects the extreme complexity and inherent redundancy of the clearance processes and argues for substantial investigative effort in this arena. In addition, it leads us to a sense that approaches to significant therapeutic modulation of selective myeloid clearance are still a long way off.

36 citations


Journal ArticleDOI
TL;DR: The data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-γ, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues.
Abstract: Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the G protein-coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A(-/-) mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening, histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A(-/-) colons showed significantly more TNF-α(+) and Ly6C(hi)MHCII(-) proinflammatory monocytes and eosinophils than in wild-type colons. Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A(-/-) mice. G2A(-/-) mice also had less IFN-γ in inflamed colon tissues than wild-type mice. Fewer CD4(+) lymphocytes were recruited to inflamed G2A(-/-) colons, and fewer colonic lymphocytes produced IFN-γ upon ex vivo stimulation. Administration of IFN-γ to G2A(-/-) mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil numbers to levels seen in wild-type mice. Furthermore, IFN-γ reduced the numbers of TNF-α(+) monocyte and enhanced their maturation from Ly6C(hi)MHCII(-) to Ly6C(int)MHCII(+) Taken together, the data suggest that G2A signaling serves to dampen intestinal inflammation via the production of IFN-γ, which, in turn, enhances monocyte maturation to a less inflammatory program and ultimately reduces eosinophil-induced injury of colonic tissues.

16 citations