scispace - formally typeset
Search or ask a question

Showing papers by "Danielle Fortin published in 2018"


Journal ArticleDOI
TL;DR: High-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China suggests that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments.
Abstract: Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments.

31 citations


Journal ArticleDOI
TL;DR: Overall oxidizing conditions and Leptothrix iron-oxidizers contribute to net iron oxide precipitation in the authors' sampes, rather than a closed biogeochemical cycle, which would result in netIron oxide dissolution as has been suggested for canga caves in Brazil.
Abstract: The surface crust that caps highly weathered banded iron formations (BIFs) supports a unique ecosystem that is a post-mining restoration priority in iron ore areas. Geochemical evidence indicates that biological processes drive the dissolution of iron oxide minerals and contribute to the ongoing evolution of this duricrust. However, limited information is available on present-day biogeochemical processes in these systems, particularly those that contribute to the precipitation of iron oxides and, thus, the cementation and stabilization of duricrusts. Freshly formed iron precipitates in water bodies perched on cangas in Karijini National Park, Western Australia, were sampled for microscopic and molecular analyses to understand currently active microbial contributions to iron precipitation in these areas. Microscopy revealed sheaths and stalks associated with iron-oxidizing bacteria. The iron-oxidizing lineages Sphaerotilus, Sideroxydans, and Pedomicrobium were identified in various samples and Leptothrix was common in four out of five samples. The iron-reducing bacteria Anaeromyxobacter dehalogens and Geobacter lovleyi were identified in the same four samples, with various heterotrophs and diverse cyanobacteria. Given this arid, deeply weathered environment, the driver of contemporary iron cycling in Karijini National Park appears to be iron-reducing bacteria, which may exist in anaerobic niches through associations with aerobic heterotrophs. Overall oxidizing conditions and Leptothrix iron-oxidizers contribute to net iron oxide precipitation in our sampes, rather than a closed biogeochemical cycle, which would result in net iron oxide dissolution as has been suggested for canga caves in Brazil. Enhancements in microbial iron oxide dissolution and subsequent reprecipitation have potential as a surface-crust-ecosystem remediation strategy at mine sites.

25 citations


Journal ArticleDOI
TL;DR: In this paper, Sporosarcina ureae, a ureolytic organism, was evaluated in terms of its ability to produce carbonate for ground reinforcement using MICP.
Abstract: . “Microbially induced carbonate precipitation” (MICP) is a biogeochemical process that can be applied to strengthen materials. The hydrolysis of urea by microbial catalysis to form carbonate is a commonly studied example of MICP. In this study, Sporosarcina ureae, a ureolytic organism, was compared to other ureolytic and non-ureolytic organisms of Bacillus and Sporosarcina genera in the assessment of its ability to produce carbonates by ureolytic MICP for ground reinforcement. It was found that S. ureae grew optimally in alkaline (pH ∼ 9.0) conditions which favoured MICP and could degrade urea (units U mL −1 represent µ mol min −1 mL OD 600) at levels (30.28 U mL −1 ) similar to S. pasteurii (32.76 U mL −1 ), the model ureolytic MICP organism. When cells of S. ureae were concentrated (OD 600 ∼ 15–20) and mixed with cementation medium containing 0.5 M calcium chloride ( CaCl2 ) and urea into a model sand, repeated treatments (3 × 24 h) were able to improve the confined direct shear strength of samples from 15.77 kPa to as much as 135.80 kPa. This was more than any other organism observed in the study. Imaging of the reinforced samples with scanning electron microscopy and energy-dispersive spectroscopy confirmed the successful precipitation of calcium carbonate ( CaCO3 ) across sand particles by S. ureae. Treated samples were also tested experimentally according to model North American climatic conditions to understand the environmental durability of MICP. No statistically significant ( p n= 3) difference in strength was observed for samples that underwent freeze–thaw cycling or flood-like simulations. However, shear strength of samples following acid rain simulations fell to 29.2 % of control MICP samples. Overall, the species S. ureae was found to be an excellent organism for MICP by ureolysis to achieve ground strengthening. However, the feasibility of MICP as a durable reinforcement technique is limited by specific climate conditions (i.e. acid rain).

18 citations


Journal ArticleDOI
TL;DR: In this paper, a series of marked reactions occurred in the mud breccia when compared to the original rocks, such as conversion of clay minerals from smectite into chlorite and illite, and the precipitation of secondary carbonate minerals such as calcite and siderite; silicon depletion and significant elemental enrichment of iron, manganese, magnesium, calcium and phosphorus.
Abstract: Organic-inorganic interactions occurring in petroleum-related mud volcanoes can help predict the chemical processes that are responsible for methane emissions to the atmosphere. Seven samples of mud breccia directly ejected from one crater were collected in the Dushanzi mud volcano, along with one argillite sample of the original reddish host rocks distal from the crater, for comparison purposes. The mineral and chemical compositions as well as iron species of all samples were determined using XRD, XRF and Mössbauer spectroscopy, respectively. The results indicate that a series of marked reactions occurred in the mud volcano systems, more specifically in the mud breccia when compared to the original rocks. Changes mainly included: (1) some conversion of clay minerals from smectite into chlorite and illite, and the precipitation of secondary carbonate minerals such as calcite and siderite; (2) silicon depletion and significant elemental enrichment of iron, manganese, magnesium, calcium and phosphorus; and (3) transformation of iron from ferric species in hematite and smectite into ferrous species in siderite, chlorite and illite. These geochemical reactions likely induced the color changes of the original reddish Neogene argillite to the gray or black mud breccia, as a result of reduction of elements and/or alteration of minerals associated with the oxidation of hydrocarbons. Our results also suggest that greenhouse gases emitted from the mud volcanoes are lowered through a series of methane oxidation reactions and carbon fixation (i.e., through carbonate precipitation).

3 citations