scispace - formally typeset
Search or ask a question

Showing papers by "Duilia F. de Mello published in 2015"


Journal ArticleDOI
TL;DR: In this article, photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the nearinfrared (NIR) with Hubble Space Telescope observations.
Abstract: We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z ~ 0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redshifts shows an improvement in the galaxy photometric redshifts by a factor of two in scatter and a factor three in outlier fraction (OLF) over previous UDF catalogs. The inclusion of the new NUV data is responsible for a factor of two decrease in the OLF compared to redshifts determined from only the optical and NIR data, and improves the scatter at z 2. The panchromatic coverage of the UDF from the NUV through the NIR yields robust photometric redshifts of the UDF, with the lowest OLF available.

183 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented deep Hubble Space Telescope imaging of five bright galaxies at z ~ 3.1 that had previously been identified as candidate LyC emitters with ground-based images, and derived strong lσ limits on the relative escape fraction between 0.07 and 0.09.
Abstract: Narrowband imaging of the rest-frame Lyman continuum (LyC) of galaxies at z ~ 3.1 has produced a large number of candidate LyC-emitting galaxies. These samples are contaminated by galaxies at lower redshift. To better understand LyC escape, we need an uncontaminated sample of galaxies that emit strongly in the LyC. Here we present deep Hubble Space Telescope imaging of five bright galaxies at z ~ 3.1 that had previously been identified as candidate LyC emitters with ground-based images. The WFC3 F336W images probe the LyC of galaxies at z > 3.06 and provide an order-of-magnitude increase in spatial resolution over ground-based imaging. The non-ionizing UV images often show multiple galaxies (or components) within ~ 1" of the candidate LyC emission seen from the ground. In each case, only one of the components is emitting light in the F336W filter, which would indicate LyC escape if that component is at z > 3.06. We use Keck/NIRSPEC near-IR spectroscopy to measure redshifts of these components to distinguish LyC emitters from foreground contamination. We find that two candidates are low-redshift contaminants, one candidate had a previously misidentified redshift, and the other two cannot be confirmed as LyC emitters. The level of contamination is consistent with previous estimates. For the galaxies with z > 3.06, we derive strong lσ limits on the relative escape fraction between 0.07 and 0.09. We still do not have a sample of definitive LyC emitters, and a much larger study of low-luminosity galaxies is required. The combination of high-resolution imaging and deep spectroscopy is critical for distinguishing LyC emitters from foreground contaminants.

158 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented deep Hubble imaging of five bright galaxies at z~3.1 and z>3.06 and derived strong 1 sigma limits on the relative escape fraction between 0.07 and 0.09.
Abstract: Narrow-band imaging of the rest-frame Lyman continuum (LyC) of galaxies at z~3.1 has produced a large number of candidate LyC-emitting galaxies. These samples are contaminated by galaxies at lower redshift. To better understand LyC escape, we need an uncontaminated sample of galaxies that emit strongly in the LyC. Here we present deep Hubble imaging of five bright galaxies at z~3.1 that had previously been identified as candidate LyC-emitters with ground-based images. The WFC3 F336W images probe the LyC of galaxies at z>3.06 and provide an order-of-magnitude increase in spatial resolution over ground-based imaging. The non-ionizing UV images often show multiple galaxies (or components) within ~1'' of the candidate LyC emission seen from the ground. In each case, only one of the components is emitting light in the F336W filter, which would indicate LyC escape if that component is at z>3.06. We use Keck/NIRSPEC near-IR spectroscopy to measure redshifts of these components to distinguish LyC-emitters from foreground contamination. We find that two candidates are low redshift contaminants, one candidate had a previously misidentified redshift, and the other two cannot be confirmed as LyC-emitters. The level of contamination is consistent with previous estimates. For the galaxies with z>3.06, we derive strong 1 sigma limits on the relative escape fraction between 0.07 and 0.09. We still do not have a sample of definitive LyC-emitters, and a much larger study of low luminosity galaxies is required. The combination of high resolution imaging and deep spectroscopy is critical for distinguishing LyC-emitters from foreground contaminants.

138 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed visual classification scheme was designed to cover a wide range of CANDELS science goals, including mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties.
Abstract: We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

136 citations


Journal ArticleDOI
TL;DR: In this article, the authors present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the nearinfrared (NIR) with Hubble Space Telescope observations.
Abstract: We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z~0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redshifts shows an improvement in the galaxy photometric redshifts by a factor of two in scatter and a factor three in outlier fraction over previous UDF catalogs. The inclusion of the new NUV data is responsible for a factor of two decrease in the outlier fraction compared to redshifts determined from only the optical and NIR data, and improves the scatter at z 2. The panchromatic coverage of the UDF from the NUV through the NIR yields robust photometric redshifts of the UDF, with the lowest outlier fraction available.

106 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived the gas-phase metallicity gradients across NGC 6845A and its two tails and found that these are shallower than those for isolated galaxies.
Abstract: We have obtained Gemini/GMOS spectra of 28 regions located across the interacting group NGC 6845, spanning from the inner regions of the four major galaxies (NGC 6845A, B, C, D) to the tidal tails of NGC 6845A. All regions in the tails are star-forming objects with ages younger than 10 Myr. We derived the gas-phase metallicity gradients across NGC 6845A and its two tails and we find that these are shallower than those for isolated galaxies. NGC 6845A has a gas-phase oxygen central metallicity of \mbox{12+log(O/H)$\sim$8.5} and a flat gas-phase metallicity gradient ($\beta$=0.002$\pm$0.004 dex kpc$^{-1}$) out to $\sim$4 $\times$ R$_{25}$ (to the end of the longest tidal tail). Considering the mass-metallicity relation, the central region of NGC 6845A displays a lower oxygen abundance than the expected for its mass. Taking into account this fact and considering the flat oxygen distribution measured along the eastern tidal tail, we suggest that an interaction event has produced a dilution in the central metallicity of this galaxy and the observed flattening in its metal distribution. We found that the star formation process along the eastern tidal structure has not been efficient enough to increase the oxygen abundances in this place, suggesting that this structure was formed from enriched material.

14 citations


Journal ArticleDOI
TL;DR: In this article, a multi-wavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field is presented.
Abstract: Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies' morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct "tadpole" shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

12 citations


Journal ArticleDOI
TL;DR: In this article, a study of the kinematics and physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope.
Abstract: We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+ C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and H alpha emission, stellar continuum, velocity dispersion, electron density, H alpha equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(H alpha) similar to 14 x 10(41) erg s(-1) and the star formation rate, SFR similar to 11 M-circle dot yr(-1) for the central merging region of HCG 31A+ C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.

8 citations


Journal Article
TL;DR: In this paper, a detailed visual classification scheme was designed to cover a wide range of CANDELS science goals, including mergers and interactions, the clumpiness of galaxies, $k$-corrections, and a variety of other structural properties.
Abstract: We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H<24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies up to z<4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, $k$-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed -- GOODS-S. The wide area coverage spanning the full field includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the GUI that we developed to classify galaxies. We find that the level of agreement among classifiers is good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

5 citations


Posted Content
TL;DR: In this article, a multi-wavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314
Abstract: Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies' morphological properties across cosmic time. Here we present results of a multiwavelength investigation of the morphologies of "tadpole" galaxies at intermediate redshift (0.314