Author

# Eli Yablonovitch

Other affiliations: University of California, Irvine, Lawrence Berkeley National Laboratory, University of California, Los Angeles ...read more

Bio: Eli Yablonovitch is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Photonic crystal & Spontaneous emission. The author has an hindex of 86, co-authored 512 publications receiving 48842 citations. Previous affiliations of Eli Yablonovitch include University of California, Irvine & Lawrence Berkeley National Laboratory.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

Abstract: It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that it can be controlled by modification of the properties of the radiation field. This is equally true in the solid state, where spontaneous emission plays a fundamental role in limiting the performance of semiconductor lasers, heterojunction bipolar transistors, and solar cells. If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

12,787 citations

••

TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.

Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

••

TL;DR: In this article, the photonic band gap structures, those three-dimensional periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves, are discussed.

Abstract: The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron-wave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap. a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in space. Today many new ideas and applications are being pursued in two and three dimensions and in metallic, dielectric, and acoustic structures. We review the early motivations for this research, which were derived from the need for a photonic band gap in quantum optics. This need led to a series of experimental and theoretical searches for the elusive photonic band-gap structures, those three-dimensionally periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves. We describe how the photonic semiconductor can be doped, producing tiny electromagnetic cavities. Finally, we summarize some of the anticipated implications of photonic band structure for quantum electronics and for other areas of physics and electrical engineering.

1,352 citations

••

TL;DR: A practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure and lends itself readily to microfabrication on the scale of optical wavelengths.

Abstract: We introduce a practical, new, face-centered-cubic dielectric structure which simultaneously solves two of the outstanding problems in photonic band structure. In this new ``photonic crystal'' the atoms are nonspherical, lifting the degeneracy at the W point of the Brillouin zone, and permitting a full photonic band gap rather than a pseudogap. Furthermore, this fully three-dimensional fcc structure lends itself readily to microfabrication on the scale of optical wavelengths. It is created by simply drilling three sets of holes 35.26\ifmmode^\circ\else\textdegree\fi{} off vertical into the top surface of a solid slab or wafer, as can be done, for example, by chemical-beam-assisted ion etching.

1,342 citations

••

ExxonMobil

^{1}TL;DR: In this paper, a statistical approach is taken toward the ray optics of optical media with complicated nonspherical and nonplanar surface shapes, where the light in such a medium will tend to be randomized in direction and of 2n2(x) times greater intensity than the externally incident light, where n(x), is the local index of refraction.

Abstract: A statistical approach is taken toward the ray optics of optical media with complicated nonspherical and nonplanar surface shapes. As a general rule, the light in such a medium will tend to be randomized in direction and of 2n2(x) times greater intensity than the externally incident light, where n(x) is the local index of refraction. A specific method for doing optical calculations in statistical ray optics will be outlined. These optical enhancement effects can result in a new type of antireflection coating. In addition, these effects can improve the efficiency as well as reduce the cost of solar cells.

1,138 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

••

TL;DR: If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

Abstract: It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that it can be controlled by modification of the properties of the radiation field. This is equally true in the solid state, where spontaneous emission plays a fundamental role in limiting the performance of semiconductor lasers, heterojunction bipolar transistors, and solar cells. If a three-dimensionally periodic dielectric structure has an electromagnetic band gap which overlaps the electronic band edge, then spontaneous emission can be rigorously forbidden.

12,787 citations

••

TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.

Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

••

TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.

Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

••

TL;DR: In this paper, it was shown that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu/sub eff/, which can be tuned to values not accessible in naturally occurring materials.

Abstract: We show that microstructures built from nonmagnetic conducting sheets exhibit an effective magnetic permeability /spl mu//sub eff/, which can be tuned to values not accessible in naturally occurring materials, including large imaginary components of /spl mu//sub eff/. The microstructure is on a scale much less than the wavelength of radiation, is not resolved by incident microwaves, and uses a very low density of metal so that structures can be extremely lightweight. Most of the structures are resonant due to internal capacitance and inductance, and resonant enhancement combined with compression of electrical energy into a very small volume greatly enhances the energy density at critical locations in the structure, easily by factors of a million and possibly by much more. Weakly nonlinear materials placed at these critical locations will show greatly enhanced effects raising the possibility of manufacturing active structures whose properties can be switched at will between many states.

8,135 citations